Difference between revisions of "2021 AMC 12B Problems/Problem 21"

(Solution (Rough Approximation))
(Solution (Rough Approximation))
Line 12: Line 12:
 
Note that this solution is not recommended unless you're running out of time.
 
Note that this solution is not recommended unless you're running out of time.
  
Upon pure observation, it is obvious that one solution to this equality is <math>x=\sqrt{2}</math>. From this, we can deduce that this equality has two solutions, since <math>\sqrt{2}^{2^{x}}</math> grows faster than <math>x^{2^{\sqrt{2}}}</math> (for greater values of <math>x</math>) and <math>\sqrt{2}^{2^{x}}</math> is greater than <math>x^{2^{\sqrt{2}}}</math> for <math>x<\sqrt{2}</math> and less than <math>x^{2^{\sqrt{2}}}</math> for <math>\sqrt{2}<x<n</math>, where <math>n</math> is the second solution. Thus, the answer cannot be <math>A</math> or <math>B</math>. We then start plugging in numbers to roughly approximate the answer. When <math>x=2</math>, <math>x^{2^{\sqrt{2}}}>\sqrt{2}^{2^{x}}</math>, thus the answer cannot be <math>C</math>. Then, when <math>x=4</math>, <math>x^{2^{\sqrt{2}}}=4^{2^{\sqrt{2}}}<64<\sqrt{2}^{2^{x}}=256</math>. Therefore, <math>S<4+\sqrt{2}<6</math>, so the answer is <math>\boxed{\textbf{(D) } 2 \le x < 6}</math>.
+
Upon pure observation, it is obvious that one solution to this equality is <math>x=\sqrt{2}</math>. From this, we can deduce that this equality has two solutions, since <math>\sqrt{2}^{2^{x}}</math> grows faster than <math>x^{2^{\sqrt{2}}}</math> (for greater values of <math>x</math>) and <math>\sqrt{2}^{2^{x}}</math> is greater than <math>x^{2^{\sqrt{2}}}</math> for <math>x<\sqrt{2}</math> and less than <math>x^{2^{\sqrt{2}}}</math> for <math>\sqrt{2}<x<n</math>, where <math>n</math> is the second solution. Thus, the answer cannot be <math>\text{A}</math> or <math>\text{B}</math>. We then start plugging in numbers to roughly approximate the answer. When <math>x=2</math>, <math>x^{2^{\sqrt{2}}}>\sqrt{2}^{2^{x}}</math>, thus the answer cannot be <math>\text{C}</math>. Then, when <math>x=4</math>, <math>x^{2^{\sqrt{2}}}=4^{2^{\sqrt{2}}}<64<\sqrt{2}^{2^{x}}=256</math>. Therefore, <math>S<4+\sqrt{2}<6</math>, so the answer is <math>\boxed{\textbf{(D) } 2 \le x < 6}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=20|num-a=22}}
 
{{AMC12 box|year=2021|ab=B|num-b=20|num-a=22}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 01:25, 12 February 2021

Problem

Let $S$ be the sum of all positive real numbers $x$ for which\[x^{2^{\sqrt2}}=\sqrt2^{2^x}.\]Which of the following statements is true?

$\textbf{(A) }S<\sqrt2 \qquad \textbf{(B) }S=\sqrt2 \qquad \textbf{(C) }\sqrt2<S<2\qquad \textbf{(D) }2\le S<6 \qquad \textbf{(E) }S\ge 6$

Video Solution by OmegaLearn (Logarithmic Tricks)

https://youtu.be/uCTpLB-kGR4

~ pi_is_3.14

Solution (Rough Approximation)

Note that this solution is not recommended unless you're running out of time.

Upon pure observation, it is obvious that one solution to this equality is $x=\sqrt{2}$. From this, we can deduce that this equality has two solutions, since $\sqrt{2}^{2^{x}}$ grows faster than $x^{2^{\sqrt{2}}}$ (for greater values of $x$) and $\sqrt{2}^{2^{x}}$ is greater than $x^{2^{\sqrt{2}}}$ for $x<\sqrt{2}$ and less than $x^{2^{\sqrt{2}}}$ for $\sqrt{2}<x<n$, where $n$ is the second solution. Thus, the answer cannot be $\text{A}$ or $\text{B}$. We then start plugging in numbers to roughly approximate the answer. When $x=2$, $x^{2^{\sqrt{2}}}>\sqrt{2}^{2^{x}}$, thus the answer cannot be $\text{C}$. Then, when $x=4$, $x^{2^{\sqrt{2}}}=4^{2^{\sqrt{2}}}<64<\sqrt{2}^{2^{x}}=256$. Therefore, $S<4+\sqrt{2}<6$, so the answer is $\boxed{\textbf{(D) } 2 \le x < 6}$.

See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS