Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

Line 6: Line 6:
  
 
== Solution ==
 
== Solution ==
A quadratic equation has no real solutions if and only if the discriminant is nonpositive. Therefore:
+
A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:
 +
<ol style="margin-left: 1.5em;">
 +
  <li>Since <math>x^2+bx+c=0</math> does not have real solutions, we have <math>b^2\leq 4c.</math></li><p>
 +
  <li>Since <math>x^2+cx+b=0</math> does not have real solutions, we have <math>c^2\leq 4b.</math></li><p>
 +
</ol>
 +
Squaring the first inequality, we get <math>b^4\leq 16c^2.</math> Multiplying the second inequality by <math>16,</math> we get <math>16c^2\leq 64b.</math> Combining these results, we get <cmath>b^4\leq 16c^2\leq 64b.</cmath>
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2021 Fall|ab=A|num-b=19|num-a=21}}
 +
{{MAA Notice}}

Revision as of 20:08, 22 November 2021

Problem

How many ordered pairs of positive integers $(b,c)$ exist where both $x^2+bx+c=0$ and $x^2+cx+b=0$ do not have distinct, real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad$

Solution

A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:

  1. Since $x^2+bx+c=0$ does not have real solutions, we have $b^2\leq 4c.$
  2. Since $x^2+cx+b=0$ does not have real solutions, we have $c^2\leq 4b.$

Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\]

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png