Difference between revisions of "2021 Fall AMC 10A Problems/Problem 20"

Line 62: Line 62:
  
 
~Arcticturn
 
~Arcticturn
 +
 +
== Solution 4 ==
 +
We need to solve the following system of inequalities:
 +
<cmath>
 +
\[
 +
\left\{
 +
\begin{array}{ll}
 +
b^2 - 4 c \leq 0 \\
 +
c^2 - 4 b \leq 0
 +
\end{array}
 +
\right..
 +
\]
 +
</cmath>
 +
 +
Feasible solutions are in the region formed between two parabolas <math>b^2 - 4 c = 0</math> and <math>c^2 - 4 b = 0</math>.
 +
 +
Define <math>f \left( b \right) = \frac{b^2}{4}</math> and <math>g \left( b \right) = 2 \sqrt{b}</math>.
 +
Therefore, all feasible solutions are in the region formed between the graphs of these two functions.
 +
 +
For <math>b = 1</math>, <math>f \left( b \right) = \frac{1}{4}</math> and <math>g \left( b \right) = 2</math>.
 +
Hence, the feasible <math>c</math> are 1, 2.
 +
 +
For <math>b = 2</math>, <math>f \left( b \right) = 1</math> and <math>g \left( b \right) = 2 \sqrt{2}</math>.
 +
Hence, the feasible <math>c</math> are 1, 2.
 +
 +
For <math>b = 3</math>, <math>f \left( b \right) = \frac{9}{4}</math> and <math>g \left( b \right) = 2 \sqrt{3}</math>.
 +
Hence, the feasible <math>c</math> is 3.
 +
 +
For <math>b = 4</math>, <math>f \left( b \right) = 4</math> and <math>g \left( b \right) = 4</math>.
 +
Hence, the feasible <math>c</math> is 4.
 +
 +
For <math>b > 4</math>, <math>f \left( b \right) > g \left( b \right)</math>. Hence, there is no feasible <math>c</math>.
 +
 +
Putting all cases together, the correct answer is <math>\boxed{\textbf{(B) }6}</math>.
 +
 +
~Steven Chen (www.professorchenedu.com)
  
  

Revision as of 21:25, 25 November 2021

Problem

How many ordered pairs of positive integers $(b,c)$ exist where both $x^2+bx+c=0$ and $x^2+cx+b=0$ do not have distinct, real solutions?

$\textbf{(A) } 4 \qquad \textbf{(B) } 6 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 10 \qquad \textbf{(E) } 12 \qquad$

Solution 1 (Casework)

A quadratic equation does not have real solutions if and only if the discriminant is nonpositive. We conclude that:

  1. Since $x^2+bx+c=0$ does not have real solutions, we have $b^2\leq 4c.$
  2. Since $x^2+cx+b=0$ does not have real solutions, we have $c^2\leq 4b.$

Squaring the first inequality, we get $b^4\leq 16c^2.$ Multiplying the second inequality by $16,$ we get $16c^2\leq 64b.$ Combining these results, we get \[b^4\leq 16c^2\leq 64b.\] We apply casework to the value of $b:$

  • If $b=1,$ then $1\leq 16c^2\leq 64,$ from which $c=1,2.$
  • If $b=2,$ then $16\leq 16c^2\leq 128,$ from which $c=1,2.$
  • If $b=3,$ then $81\leq 16c^2\leq 192,$ from which $c=3.$
  • If $b=4,$ then $256\leq 16c^2\leq 256,$ from which $c=4.$

Together, there are $\boxed{\textbf{(B) } 6}$ ordered pairs $(b,c),$ namely $(1,1),(1,2),(2,1),(2,2),(3,3),$ and $(4,4).$

~MRENTHUSIASM

Solution 2 (Graphing)

Similar to Solution 1, use the discriminant to get $b^2\leq 4c$ and $c^2\leq 4b$. These can be rearranged to $c\geq \frac{1}{4}b^2$ and $b\geq \frac{1}{4}c^2$. Now, we can roughly graph these two inequalities, letting one of them be the $x$ axis and the other be $y$. The graph of solutions should be above the parabola and under its inverse, meaning we want points on the graph or in the first area enclosed by the two graphs: [asy] unitsize(2); Label f;  f.p=fontsize(6);  xaxis("$x$",0,5,Ticks(f, 1.0));  yaxis("$y$",0,5,Ticks(f, 1.0));  real f(real x)  {  return 0.25x^2;  }  real g(real x)  {  return 2*sqrt(x);  }  dot((1,1)); dot((2,1)); dot((1,2)); dot((2,2)); dot((3,3)); dot((4,4)); draw(graph(f,0,sqrt(20))); draw(graph(g,0,5)); [/asy] We are looking for lattice points (since $b$ and $c$ are positive integers), of which we can count $\boxed{\textbf{(B) } 6}$.

~aop2014

Solution 3 (Oversimplified but Risky)

A quadratic equation $Ax^2+Bx+C=0$ has one real solution if and only if $\sqrt{B^2-4AC}=0.$ Similarly, it has imaginary solutions if and only if $\sqrt{B^2-4AC}<0.$ We proceed as following:

We want both $x^2+bx+c$ to be $1$ value or imaginary and $x^2+cx+b$ to be $1$ value or imaginary. $x^2+4x+4$ is one such case since $\sqrt {b^2-4ac}$ is $0.$ Also, $x^2+3x+3, x^2+2x+2, x^2+x+1$ are always imaginary for both $b$ and $c.$ We also have $x^2+x+2$ along with $x^2+2x+1$ since the latter has one solution, while the first one is imaginary. Therefore, we have $6$ total ordered pairs of integers, which is $\boxed{\textbf{(B) } 6}.$

~Arcticturn

Solution 4

We need to solve the following system of inequalities: \[ \left\{ \begin{array}{ll} b^2 - 4 c \leq 0 \\ c^2 - 4 b \leq 0 \end{array} \right.. \]

Feasible solutions are in the region formed between two parabolas $b^2 - 4 c = 0$ and $c^2 - 4 b = 0$.

Define $f \left( b \right) = \frac{b^2}{4}$ and $g \left( b \right) = 2 \sqrt{b}$. Therefore, all feasible solutions are in the region formed between the graphs of these two functions.

For $b = 1$, $f \left( b \right) = \frac{1}{4}$ and $g \left( b \right) = 2$. Hence, the feasible $c$ are 1, 2.

For $b = 2$, $f \left( b \right) = 1$ and $g \left( b \right) = 2 \sqrt{2}$. Hence, the feasible $c$ are 1, 2.

For $b = 3$, $f \left( b \right) = \frac{9}{4}$ and $g \left( b \right) = 2 \sqrt{3}$. Hence, the feasible $c$ is 3.

For $b = 4$, $f \left( b \right) = 4$ and $g \left( b \right) = 4$. Hence, the feasible $c$ is 4.

For $b > 4$, $f \left( b \right) > g \left( b \right)$. Hence, there is no feasible $c$.

Putting all cases together, the correct answer is $\boxed{\textbf{(B) }6}$.

~Steven Chen (www.professorchenedu.com)


Video Solution by Mathematical Dexterity

https://www.youtube.com/watch?v=EkaKfkQgFbI

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png