Difference between revisions of "2021 Fall AMC 10A Problems/Problem 21"

(Solution 3 (Simple))
m (Solution 1 (Multinomial Numbers))
Line 8: Line 8:
 
For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.
 
For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.
  
Let <math>d</math> be the number of ways to distribute <math>20</math> balls to <math>5</math> bins. We have
+
Let <math>d</math> be the number of ways to distribute <math>20</math> balls into <math>5</math> bins. We have
 
<cmath>p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.</cmath> Therefore, the answer is <cmath>\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.</cmath>
 
<cmath>p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.</cmath> Therefore, the answer is <cmath>\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.</cmath>
  

Revision as of 21:00, 22 November 2021

Problem

Each of the $20$ balls is tossed independently and at random into one of the $5$ bins. Let $p$ be the probability that some bin ends up with $3$ balls, another with $5$ balls, and the other three with $4$ balls each. Let $q$ be the probability that every bin ends up with $4$ balls. What is $\frac{p}{q}$?

$\textbf{(A)}\ 1 \qquad\textbf{(B)}\  4 \qquad\textbf{(C)}\  8 \qquad\textbf{(D)}\  12 \qquad\textbf{(E)}\ 16$

Solution 1 (Multinomial Numbers)

For simplicity purposes, we assume that the balls are indistinguishable and the bins are distinguishable.

Let $d$ be the number of ways to distribute $20$ balls into $5$ bins. We have \[p=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{d} \text{ and } q=\frac{\binom{20}{4,4,4,4,4}}{d}.\] Therefore, the answer is \[\frac pq=\frac{5\cdot4\cdot\binom{20}{3,5,4,4,4}}{\binom{20}{4,4,4,4,4}}=\frac{5\cdot4\cdot\frac{20!}{3!5!4!4!4!}}{\frac{20!}{4!4!4!4!4!}}=\frac{5\cdot4\cdot(4!4!4!4!4!)}{3!5!4!4!4!}=\frac{5\cdot4\cdot4}{5}=\boxed{\textbf{(E)}\ 16}.\]

Remark

By the stars and bars argument, we get $d=\binom{20+5-1}{5-1}=\binom{24}{4}.$

~MRENTHUSIASM

Solution 2 (Simple)

See Also

2021 Fall AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png