Difference between revisions of "2023 AIME I Problems/Problem 2"

(Solution2)
(Problem)
(8 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Positive real numbers <math>b \not= 1</math> and <math>n</math> satisfy the equations <cmath>\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).</cmath> The value of <math>n</math> is <math>\frac{j}{k},</math> where <math>j</math> and <math>k</math> are relatively prime positive integers. Find <math>j+k.</math>
 
Positive real numbers <math>b \not= 1</math> and <math>n</math> satisfy the equations <cmath>\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).</cmath> The value of <math>n</math> is <math>\frac{j}{k},</math> where <math>j</math> and <math>k</math> are relatively prime positive integers. Find <math>j+k.</math>
 +
==Video Solution & More by MegaMath==
 +
https://www.youtube.com/watch?v=jxY7BBe-4gU
  
 
==Solution==
 
==Solution==
Line 17: Line 19:
  
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 
==Solution2==
 
Denote b=n^x.  Hence, the system of equations given in the problem can be rewritten as
 
sqrt(x)=x/2,  b*x=1+x
 
Thus, x=x^2/4, x=4. So, n=b^4
 
Then, 4x=1+x. So, x=1/3
 
  
 
==Video Solution by TheBeautyofMath==
 
==Video Solution by TheBeautyofMath==

Revision as of 13:54, 9 February 2024

Problem

Positive real numbers $b \not= 1$ and $n$ satisfy the equations \[\sqrt{\log_b n} = \log_b \sqrt{n} \qquad \text{and} \qquad b \cdot \log_b n = \log_b (bn).\] The value of $n$ is $\frac{j}{k},$ where $j$ and $k$ are relatively prime positive integers. Find $j+k.$

Video Solution & More by MegaMath

https://www.youtube.com/watch?v=jxY7BBe-4gU

Solution

Denote $x = \log_b n$. Hence, the system of equations given in the problem can be rewritten as \begin{align*} \sqrt{x} & = \frac{1}{2} x , \\ bx & = 1 + x . \end{align*} Solving the system gives $x = 4$ and $b = \frac{5}{4}$. Therefore, \[n = b^x = \frac{625}{256}.\] Therefore, the answer is $625 + 256 = \boxed{881}$.

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution by TheBeautyofMath

https://youtu.be/U96XHH23zhA

~IceMatrix

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png