Difference between revisions of "2023 AIME I Problems/Problem 5"

(Solution 2 (Trigonometry))
m (Solution 1 (Ptolemy's Theorem))
 
(134 intermediate revisions by 17 users not shown)
Line 1: Line 1:
Problem (not official; when the official problem statement comes out, please update this page; to ensure credibility until the official problem statement comes out, please add an O if you believe this is correct and add an X if you believe this is incorrect):
+
==Problem==
  
Let there be a circle circumscribing a square ABCD, and let P be a point on the circle. PA*PC = 56, PB*PD = 90. What is the area of the square?
+
Let <math>P</math> be a point on the circle circumscribing square <math>ABCD</math> that satisfies <math>PA \cdot PC = 56</math> and <math>PB \cdot PD = 90.</math> Find the area of <math>ABCD.</math>
  
==Solution==
+
==Solution 1 (Ptolemy's Theorem)==
  
We may assume that <math>P</math> is between <math>B</math> and <math>C</math>. Let <math>PA = a</math>, <math>PB = b</math>, <math>PC = C</math>, <math>PD = d</math>, and <math>AB = s</math>. We have <math>a^2 + c^2 = AC^2 = 2s^2</math>, because <math>AC</math> is a diagonal. Similarly, <math>b^2 + d^2 = 2s^2</math>. Therefore, <math>(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112</math>. Similarly, <math>(b+d)^2 = 2s^2 + 180</math>.  
+
[[Ptolemy's theorem]] states that for cyclic quadrilateral <math>WXYZ</math>, <math>WX\cdot YZ + XY\cdot WZ = WY\cdot XZ</math>.
 +
 
 +
We may assume that <math>P</math> is between <math>B</math> and <math>C</math>. Let <math>PA = a</math>, <math>PB = b</math>, <math>PC = c</math>, <math>PD = d</math>, and <math>AB = s</math>. We have <math>a^2 + c^2 = AC^2 = 2s^2</math>, because <math>AC</math> is a diameter of the circle. Similarly, <math>b^2 + d^2 = 2s^2</math>. Therefore, <math>(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112</math>. Similarly, <math>(b+d)^2 = 2s^2 + 180</math>.  
  
 
By Ptolemy's Theorem on <math>PCDA</math>, <math>as + cs = ds\sqrt{2}</math>, and therefore <math>a + c = d\sqrt{2}</math>. By Ptolemy's on <math>PBAD</math>, <math>bs + ds = as\sqrt{2}</math>, and therefore <math>b + d = a\sqrt{2}</math>. By squaring both equations, we obtain
 
By Ptolemy's Theorem on <math>PCDA</math>, <math>as + cs = ds\sqrt{2}</math>, and therefore <math>a + c = d\sqrt{2}</math>. By Ptolemy's on <math>PBAD</math>, <math>bs + ds = as\sqrt{2}</math>, and therefore <math>b + d = a\sqrt{2}</math>. By squaring both equations, we obtain
 +
<cmath>\begin{alignat*}{8}
 +
2d^2 &= (a+c)^2 &&= 2s^2 + 112, \\
 +
2a^2 &= (b+d)^2 &&= 2s^2 + 180.
 +
\end{alignat*}</cmath>
 +
Thus, <math>a^2 = s^2 + 90</math>, and <math>d^2 = s^2 + 56</math>. Plugging these values into <math>a^2 + c^2 = b^2 + d^2 = 2s^2</math>, we obtain <math>c^2 = s^2 - 90</math>, and <math>b^2 = s^2 - 56</math>. Now, we can solve using <math>a</math> and <math>c</math> (though using <math>b</math> and <math>d</math> yields the same solution for <math>s</math>).
 +
<cmath>\begin{align*}
 +
ac = (\sqrt{s^2 - 90})(\sqrt{s^2 + 90}) &= 56 \\
 +
(s^2 + 90)(s^2 - 90) &= 56^2 \\
 +
s^4 &= 90^2 + 56^2 = 106^2 \\
 +
s^2 &= \boxed{106}.
 +
\end{align*}</cmath>
 +
~mathboy100
  
<cmath>2d^2 = (a+c)^2 = 2s^2 + 112</cmath>
+
==Solution 2 (Areas and Pythagorean Theorem)==
<cmath>2a^2 = (b+d)^2 = 2s^2 + 180.</cmath>
 
  
Thus, <math>a^2 = s^2 + 90</math>, and <math>d^2 = s^2 + 56</math>. Plugging these values into <math>a^2 + c^2 = b^2 + d^2 = 2s^2</math>, we obtain <math>c^2 = s^2 - 90</math>, and <math>b^2 = s^2 - 56</math>. Now, we can solve using <math>a</math> and <math>c</math> (though using <math>b</math> and <math>d</math> yields the same solution for <math>s</math>).
+
By the <b>Inscribed Angle Theorem</b>, we conclude that <math>\triangle PAC</math> and <math>\triangle PBD</math> are right triangles.
 +
 
 +
Let the brackets denote areas. We are given that
 +
<cmath>\begin{alignat*}{8}
 +
2[PAC] &= PA \cdot PC &&= 56, \\
 +
2[PBD] &= PB \cdot PD &&= 90.
 +
\end{alignat*}</cmath>
 +
Let <math>O</math> be the center of the circle, <math>X</math> be the foot of the perpendicular from <math>P</math> to <math>\overline{AC},</math> and <math>Y</math> be the foot of the perpendicular from <math>P</math> to <math>\overline{BD},</math> as shown below:
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
 
 +
size(200);
 +
pair A, B, C, D, O, P, X, Y;
 +
A = (-sqrt(106)/2,sqrt(106)/2);
 +
B = (-sqrt(106)/2,-sqrt(106)/2);
 +
C = (sqrt(106)/2,-sqrt(106)/2);
 +
D = (sqrt(106)/2,sqrt(106)/2);
 +
O = origin;
 +
 
 +
path p;
 +
p = Circle(O,sqrt(212)/2);
 +
draw(p);
 +
 
 +
P = intersectionpoints(Circle(A,4),p)[1];
 +
X = foot(P,A,C);
 +
Y = foot(P,B,D);
 +
 
 +
draw(A--B--C--D--cycle);
 +
draw(P--A--C--cycle,red);
 +
draw(P--B--D--cycle,blue);
 +
draw(P--X,red+dashed);
 +
draw(P--Y,blue+dashed);
 +
markscalefactor=0.075;
 +
draw(rightanglemark(A,P,C),red);
 +
draw(rightanglemark(P,X,C),red);
 +
draw(rightanglemark(B,P,D),blue);
 +
draw(rightanglemark(P,Y,D),blue);
 +
dot("$A$", A, 1.5*NW, linewidth(4));
 +
dot("$B$", B, 1.5*SW, linewidth(4));
 +
dot("$C$", C, 1.5*SE, linewidth(4));
 +
dot("$D$", D, 1.5*NE, linewidth(4));
 +
dot("$P$", P, 1.5*dir(P), linewidth(4));
 +
dot("$X$", X, 1.5*dir(20), linewidth(4));
 +
dot("$Y$", Y, 1.5*dir(Y-P), linewidth(4));
 +
dot("$O$", O, 1.5*E, linewidth(4));
 +
</asy>
 +
Let <math>d</math> be the diameter of <math>\odot O.</math> It follows that
 +
<cmath>\begin{alignat*}{8}
 +
2[PAC] &= d\cdot PX &&= 56, \\
 +
2[PBD] &= d\cdot PY &&= 90.
 +
\end{alignat*}</cmath>
 +
Moreover, note that <math>OXPY</math> is a rectangle. By the Pythagorean Theorem, we have <cmath>PX^2+PY^2=PO^2.</cmath>
 +
We rewrite this equation in terms of <math>d:</math> <cmath>\left(\frac{56}{d}\right)^2+\left(\frac{90}{d}\right)^2=\left(\frac d2\right)^2,</cmath> from which <math>d^2=212.</math> Therefore, we get <cmath>[ABCD] = \frac{d^2}{2} = \boxed{106}.</cmath>
 +
~MRENTHUSIASM
 +
 
 +
==Solution 3 (Similar Triangles)==
 +
<asy>
 +
/* Made by MRENTHUSIASM */
 +
 
 +
size(200);
 +
pair A, B, C, D, O, P, X, Y;
 +
A = (-sqrt(106)/2,sqrt(106)/2);
 +
B = (-sqrt(106)/2,-sqrt(106)/2);
 +
C = (sqrt(106)/2,-sqrt(106)/2);
 +
D = (sqrt(106)/2,sqrt(106)/2);
 +
O = origin;
 +
 
 +
path p;
 +
p = Circle(O,sqrt(212)/2);
 +
draw(p);
 +
 
 +
P = intersectionpoints(Circle(A,4),p)[1];
 +
X = foot(P,A,C);
 +
Y = foot(P,B,D);
 +
 
 +
draw(A--B--C--D--cycle);
 +
draw(P--A--C--cycle,red);
 +
draw(P--B--D--cycle,blue);
 +
draw(P--X,red+dashed);
 +
draw(P--Y,blue+dashed);
 +
markscalefactor=0.075;
 +
draw(rightanglemark(A,P,C),red);
 +
draw(rightanglemark(P,X,C),red);
 +
draw(rightanglemark(B,P,D),blue);
 +
draw(rightanglemark(P,Y,D),blue);
 +
dot("$A$", A, 1.5*NW, linewidth(4));
 +
dot("$B$", B, 1.5*SW, linewidth(4));
 +
dot("$C$", C, 1.5*SE, linewidth(4));
 +
dot("$D$", D, 1.5*NE, linewidth(4));
 +
dot("$P$", P, 1.5*dir(P), linewidth(4));
 +
dot("$X$", X, 1.5*dir(20), linewidth(4));
 +
dot("$Y$", Y, 1.5*dir(Y-P), linewidth(4));
 +
dot("$O$", O, 1.5*E, linewidth(4));
 +
</asy>
 +
Let the center of the circle be <math>O</math>, and the radius of the circle be <math>r</math>. Since <math>ABCD</math> is a rhombus with diagonals <math>2r</math> and <math>2r</math>, its area is <math>\dfrac{1}{2}(2r)(2r) = 2r^2</math>. Since <math>AC</math> and <math>BD</math> are diameters of the circle, <math>\triangle APC</math> and <math>\triangle BPD</math> are right triangles. Let <math>X</math> and <math>Y</math> be the foot of the altitudes to <math>AC</math> and <math>BD</math>, respectively. We have
 +
<cmath>[\triangle APC] = \frac{1}{2}(PA)(PC) = \frac{1}{2}(PX)(AC),</cmath>
 +
so <math>PX = \dfrac{(PA)(PC)}{AC} = \dfrac{28}{r}</math>. Similarly,
 +
<cmath>[\triangle BPD] = \frac{1}{2}(PB)(PD) = \frac{1}{2}(PY)(PB),</cmath>
 +
so <math>PY = \dfrac{(PB)(PD)}{BD} = \dfrac{45}{r}</math>. Since <math>\triangle APX \sim \triangle PCX,</math>
 +
<cmath>\frac{AX}{PX} = \frac{PX}{CX}</cmath>
 +
<cmath>\frac{AO - XO}{PX} = \frac{PX}{OC + XO}.</cmath>
 +
But <math>PXOY</math> is a rectangle, so <math>PY = XO</math>, and our equation becomes
 +
<cmath>\frac{r - PY}{PX} = \frac{PX}{r + PY}.</cmath>
 +
Cross multiplying and rearranging gives us <math>r^2 = PX^2 + PY^2 = \left(\dfrac{28}{r}\right)^2 + \left(\dfrac{45}{r}\right)^2</math>, which rearranges to <math>r^4 = 2809</math>. Therefore <math>[ABCD] = 2r^2 = \boxed{106}</math>.
 +
 
 +
~Cantalon
 +
 
 +
==Solution 4 (Heights and Half-Angle Formula)==
 +
Drop a height from point <math>P</math> to line <math>\overline{AC}</math> and line <math>\overline{BC}</math>. Call these two points to be <math>X</math> and <math>Y</math>, respectively. Notice that the intersection of the diagonals of <math>\square ABCD</math> meets at a right angle at the center of the circumcircle, call this intersection point <math>O</math>.
 +
 
 +
Since <math>OXPY</math> is a rectangle, <math>OX</math> is the distance from <math>P</math> to line <math>\overline{BD}</math>. We know that <math>\tan{\angle{POX}} = \frac{PX}{XO} = \frac{28}{45}</math> by triangle area and given information. Then, notice that the measure of <math>\angle{OCP}</math> is half of <math>\angle{XOP}</math>.
  
<cmath>(\sqrt{s^2 + 90})(\sqrt{s^2 - 90}) = ac = 56</cmath>
+
Using the half-angle formula for tangent,
<cmath>(s^2 + 90)(s^2 - 90) = 56^2</cmath>
 
<cmath>s^4 = 90^2 + 56^2 = 106^2</cmath>
 
<cmath>s^2 = 106.</cmath>
 
  
The answer is <math>\boxed{106}</math>.
+
<cmath>
 +
\begin{align*}
 +
\frac{(2 \cdot \tan{\angle{OCP}})}{(1-\tan^2{\angle{OCP}})} = \tan{\angle{POX}} = \frac{28}{45}
 +
\\
 +
14\tan^2{\angle{OCP}} + 45\tan{\angle{OCP}} - 14 = 0
 +
\end{align*}
 +
</cmath>
  
~mathboy100
+
Solving the equation above, we get that <math>\tan{\angle{OCP}} = -7/2</math> or <math>2/7</math>. Since this value must be positive, we pick <math>\frac{2}{7}</math>. Then, <math>\frac{PA}{PC} = 2/7</math> (since <math>\triangle CAP</math> is a right triangle with line <math>\overline{AC}</math> the diameter of the circumcircle) and <math>PA * PC = 56</math>. Solving we get <math>PA = 4</math>, <math>PC = 14</math>, giving us a diagonal of length <math>\sqrt{212}</math> and area <math>\boxed{106}</math>.
  
==Solution 2 (Trigonometry)==
+
~[[Daniel Zhou's Profile|Danielzh]]
Drop a height from point P to line AC and BC. Call these two points to be X and Y, respectively. Notice that the intersection of the diagonals of square ABCD meets at a right angle and at the center of the circumcircle, call this intersection point O.
 
Since OXPY is a rectangle, OX is the distance from P to line BD. We know the that tan(YOX) = PX/XO = 28/45 by triangle area and given information. Then, notice that the measure of angle OCP is half of the angle of angle XOY.
 
Using the half angle formula for tangent, we get that tan(OCP) = -7/2 or 2/7. Since this value must be positive, we pick 2/7. Then, PA/PC = 2/7 (since triangle CAP is a right triangle with AC also the diameter of the circumcircle) and PA * PC = 56. Solving we get PA = 4, PC = 14, giving us a diagonal of length sqrt(212) and area <math>\boxed{106}</math>.
 
  
==Solution 3 (Analytic geometry)==
+
==Solution 5 (Analytic Geometry)==
  
 
Denote by <math>x</math> the half length of each side of the square.
 
Denote by <math>x</math> the half length of each side of the square.
Line 86: Line 209:
 
</cmath>
 
</cmath>
  
+
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
==Solution 4 (Law of Cosines)==
+
 
 +
==Solution 6 (Law of Cosines)==
 
WLOG, let <math>P</math> be on minor arc <math>\overarc {AB}</math>. Let <math>r</math> and <math>O</math> be the radius and center of the circumcircle respectively, and let <math>\theta = \angle AOP</math>. 
 
WLOG, let <math>P</math> be on minor arc <math>\overarc {AB}</math>. Let <math>r</math> and <math>O</math> be the radius and center of the circumcircle respectively, and let <math>\theta = \angle AOP</math>. 
 
 
Line 103: Line 227:
 
<cmath>2r^2 = \sqrt{56^2+90^2} = 2\sqrt{28^2+45^2} = 2\sqrt{2809} = 2 \cdot 53 = \boxed{106}.</cmath>
 
<cmath>2r^2 = \sqrt{56^2+90^2} = 2\sqrt{28^2+45^2} = 2\sqrt{2809} = 2 \cdot 53 = \boxed{106}.</cmath>
 
~OrangeQuail9
 
~OrangeQuail9
 +
 +
==Solution 7 (Subtended Chords)==
 +
First draw a diagram.
 +
<asy>
 +
pair A, B, C, D, O, P;
 +
A = (0,sqrt(106));
 +
B = (0,0);
 +
C = (sqrt(106),0);
 +
D = (sqrt(106),sqrt(106));
 +
O = (sqrt(106)/2, sqrt(106)/2);
 +
P = intersectionpoint(circle(A, sqrt(212)*sin(atan(28/45)/2)), circle(O, sqrt(212)/2));
 +
draw(A--B--C--D--cycle);
 +
draw(circle(O, sqrt(212)/2));
 +
label("$A$", A, NW);
 +
label("$B$", B, SW);
 +
label("$C$", C, SE);
 +
label("$D$", D, NE);
 +
label("$P$", P, NW);
 +
label("$O$", O, 1.5*S);
 +
label("$\theta$", O, dir(120)*5);
 +
draw(P--A--C--cycle, red);
 +
draw(P--B--D--cycle, blue);
 +
draw(P--O);
 +
draw(anglemark(P,O,A,30));
 +
dot(P);
 +
dot(O);
 +
</asy>
 +
Let's say that the radius is <math>r</math>. Then the area of the <math>ABCD</math> is <math>(\sqrt2r)^2 = 2r^2</math>
 +
Using the formula for the length of a chord subtended by an angle, we get
 +
<cmath>PA = 2r\sin\left(\dfrac{\theta}2\right)</cmath>
 +
<cmath>PC = 2r\sin\left(\dfrac{180-\theta}2\right) = 2r\sin\left(90 - \dfrac{\theta}2\right) = 2r\cos\left(\dfrac{\theta}2\right)</cmath>
 +
Multiplying and simplifying these 2 equations gives
 +
<cmath>PA \cdot PC = 4r^2 \sin \left(\dfrac{\theta}2 \right) \cos \left(\dfrac{\theta}2 \right) = 2r^2 \sin\left(\theta \right) = 56</cmath>
 +
Similarly <math>PB = 2r\sin\left(\dfrac{90 +\theta}2\right)</math> and <math>PD =2r\sin\left(\dfrac{90 -\theta}2\right)</math>. Again, multiplying gives
 +
<cmath>PB \cdot PD = 4r^2 \sin\left(\dfrac{90 +\theta}2\right) \sin\left(\dfrac{90 -\theta}2\right) = 4r^2 \sin\left(90 -\dfrac{90 -\theta}2\right) \sin\left(\dfrac{90 -\theta}2\right)</cmath>
 +
<cmath> =4r^2 \sin\left(\dfrac{90 -\theta}2\right) \cos\left(\dfrac{90 -\theta}2\right) = 2r^2 \sin\left(90 - \theta \right) = 2r^2 \cos\left(\theta \right) = 90</cmath>
 +
Dividing <math>2r^2 \sin \left(\theta \right)</math> by <math>2r^2 \cos \left( \theta \right)</math> gives <math>\tan \left(\theta \right) = \dfrac{28}{45}</math>, so <math>\theta = \tan^{-1} \left(\dfrac{28}{45} \right)</math>.
 +
Pluging this back into one of the equations, gives
 +
<cmath>2r^2 = \dfrac{90}{\cos\left(\tan^{-1}\left(\dfrac{28}{45}\right)\right)}</cmath>
 +
If we imagine a <math>28</math>-<math>45</math>-<math>53</math> right triangle, we see that if <math>28</math> is opposite and <math>45</math> is adjacent, <math>\cos\left(\theta\right) = \dfrac{\text{adj}}{\text{hyp}} = \dfrac{45}{53}</math>. Now we see that
 +
<cmath>2r^2 = \dfrac{90}{\frac{45}{53}} = \boxed{106}.</cmath>
 +
~Voldemort101
 +
 +
==Solution 8 (Coordinates and Algebraic Manipulation)==
 +
<asy>
 +
pair A,B,C,D,P;
 +
A=(-3,3);
 +
B=(3,3);
 +
C=(3,-3);
 +
D=(-3,-3);
 +
draw(A--B--C--D--cycle);
 +
label(A,"$A$",NW);
 +
label(B,"$B$",NE);
 +
label(C,"$C$",SE);
 +
label(D,"$D$",SW);
 +
draw(circle((0,0),4.24264068712));
 +
P=(-1,4.12310562562);
 +
label(P,"$P$", NW);
 +
pen k=red+dashed;
 +
draw(P--A,k);
 +
draw(P--B,k);
 +
draw(P--C,k);
 +
draw(P--D,k);
 +
dot(P);
 +
</asy>
 +
Let <math>P=(a,b)</math> on the upper quarter of the circle, and let <math>k</math> be the side length of the square. Hence, we want to find <math>k^2</math>. Let the center of the circle be <math>(0,0)</math>.
 +
The two equations would thus become:
 +
<cmath>\left(\left(a+\dfrac{k}2\right)^2+\left(b-\dfrac{k}2\right)^2\right)\left(\left(a-\dfrac{k}2\right)^2+\left(b+\dfrac{k}2\right)^2\right)=56^2</cmath>
 +
<cmath>\left(\left(a-\dfrac{k}2\right)^2+\left(b-\dfrac{k}2\right)^2\right)\left(\left(a+\dfrac{k}2\right)^2+\left(b+\dfrac{k}2\right)^2\right)=90^2</cmath>
 +
Now, let <math>m=\left(a+\dfrac{k}2\right)^2</math>, <math>n=\left(a-\dfrac{k}2\right)^2</math>, <math>o=\left(b+\dfrac{k}2\right)^2</math>, and <math>p=\left(b-\dfrac{k}2\right)^2</math>. Our equations now change to <math>(m+p)(n+o)=56^2=mn+op+mo+pn</math> and <math>(n+p)(m+o)=90^2=mn+op+no+pm</math>. Subtracting the first from the second, we have <math>pm+no-mo-pn=p(m-n)-o(m-n)=(m-n)(p-o)=34\cdot146</math>. Substituting back in and expanding, we have <math>2ak\cdot-2bk=34\cdot146</math>, so <math>abk^2=-17\cdot73</math>. We now have one of our terms we need (<math>k^2</math>). Therefore, we only need to find <math>ab</math> to find <math>k^2</math>.
 +
We now write the equation of the circle, which point <math>P</math> satisfies: <cmath>a^2+b^2=\left(\dfrac{k\sqrt{2}}{2}\right)^2=\dfrac{k^2}2</cmath>
 +
We can expand the second equation, yielding <cmath>\left(a^2+b^2+\dfrac{k^2}2+(ak+bk)\right)\left(a^2+b^2+\dfrac{k^2}2-(ak+bk)\right)=(k^2+k(a+b))(k^2-k(a+b))=8100.</cmath>
 +
Now, with difference of squares, we get <math>k^4-k^2\cdot(a+b)^2=k^2(k^2-(a+b)^2)=8100</math>. We can add <math>2abk^2=-17\cdot73\cdot2=-2482</math> to this equation, which we can factor into <math>k^2(k^2-(a+b)^2+2ab)=k^2(k^2-(a^2+b^2))=8100-2482</math>. We realize that <math>a^2+b^2</math> is the same as the equation of the circle, so we plug its equation in: <math>k^2\left(k^2-\dfrac{k^2}2\right)=5618</math>. We can combine like terms to get <math>k^2\cdot\dfrac{k^2}2=5618</math>, so <math>(k^2)^2=11236</math>.
 +
Since the answer is an integer, we know <math>11236</math> is a perfect square. Since it is even, it is divisible by <math>4</math>, so we can factor <math>11236=2^2\cdot2809</math>. With some testing with approximations and last-digit methods, we can find that <math>53^2=2809</math>. Therefore, taking the square root, we find that <math>k^2</math>, the area of square <math>ABCD</math>, is <math>2\cdot53=\boxed{106}</math>.
 +
 +
~wuwang2002
 +
 +
==Solution 9 (Law of Sines)==
 +
 +
WLOG, let <math>P</math> be on minor arc <math>AD.</math> Draw in <math>AP</math>, <math>BP</math>, <math>CP</math>, <math>DP</math> and let <math>\angle ABP = x.</math>  We can see, by the inscribed angle theorem, that <math>\angle APB = \angle ACB = 45</math>, and <math>\angle CPD = \angle CAD = 45.</math> Then, <math>\angle PAB = 135-x</math>, <math>\angle PCD = \angle PAD = (135-x)-90 = 45-x</math>, and <math>\angle PDC = 90+x.</math> Letting <math>(PA, PB, PC, PD, AB) = (a,b,c,d,s)</math>, we can use the law of sines on triangles <math>PAB</math> and <math>PCD</math> to get <cmath>s\sqrt{2} = \frac{a}{\sin(x)} = \frac{b}{\sin(135-x)} = \frac{c}{\sin(90+x)} = \frac{d}{\sin(45-x)}.</cmath> Making all the angles in the above equation acute gives <cmath>s\sqrt{2} = \frac{a}{\sin(x)} = \frac{b}{\sin(45+x)} = \frac{c}{\sin(90-x)} = \frac{d}{\sin(45-x)}.</cmath>
 +
 +
Note that we are looking for <math>s^{2}.</math> We are given that <math>ac = 56</math> and <math>bd = 90.</math> This means that
 +
<math>s^{2}\sin(x)\sin(90-x) = 28</math> and <math>s^{2}\sin(45+x)\sin(45-x) = 45.</math> However, <cmath>\sin(x)\sin(90-x) = \sin(x)\cos(x) = \frac{\sin(2x)}{2}</cmath> and <cmath>\sin(45+x)\sin(45-x) = \frac{(\cos(x) + \sin(x))(\cos(x) - \sin(x))}{2} = \frac{\cos^{2}(x) - \sin^{2}(x)}{2} = \frac{\cos(2x)}{2}.</cmath>  Therefore, <math>s^{2}\sin(2x) = 56</math> and <math>s^{2}\cos(2x) = 90.</math> Therefore, by the Pythagorean Identity, <cmath>s^{2} = \sqrt{(s^{2}\sin(2x))^{2} + (s^{2}\cos(2x))^{2}} = \sqrt{56^{2} + 90^{2}} = \boxed{106}.</cmath>
 +
 +
~pianoboy
 +
 +
==Solution 10 (Areas and Trigonometry)==
 +
 +
Similar to Solution 6, let <math>P</math> be on minor arc <math>\overarc {AB}</math>, <math>r</math> and <math>O</math> be the radius and center of the circumcircle respectively, and <math>\theta = \angle AOP</math>. Since <math>\triangle APC</math> is a right triangle, <math>PA \cdot PC</math> equals the hypotenuse, <math>2r</math>, times its altitude, which can be represented as <math>r \sin \theta</math>. Therefore, <math>2r^2 \sin \theta = 56</math>. Applying similar logic to <math>\triangle BPD</math>, we get <math>2r^2 \sin (90^\circ - \theta) = 2r^2 \cos \theta = 90</math>.
 +
 +
Dividing the two equations, we have
 +
<cmath>\begin{align*}
 +
\frac{\sin \theta}{\cos \theta} &= \frac{56}{90} \\
 +
56 \cos \theta &= 90 \sin \theta \\
 +
(56 \cos \theta)^2 &= (90 \sin \theta)^2.
 +
\end{align*}</cmath>
 +
Adding <math>(56 \sin \theta)^2</math> to both sides allows us to get rid of <math>\cos \theta</math>:
 +
<cmath>\begin{align*}
 +
(56 \cos \theta)^2 + (56 \sin \theta)^2 &= (90 \sin \theta)^2 + (56 \sin \theta)^2 \\
 +
56^2 &= (90^2 + 56^2)(\sin \theta)^2 \\
 +
\frac{56^2}{90^2 + 56^2} &= (\sin \theta)^2 \\
 +
\frac{28}{53} &= \sin \theta.
 +
\end{align*}</cmath>
 +
Therefore, we have <math>2r^2\left(\frac{28}{53}\right) = 56</math>, and since the area of the square can be represented as <math>2r^2</math>, the answer is <math>56 \cdot \frac{53}{28} = \boxed{106}</math>.
 +
 +
~phillipzeng
 +
 +
==Video Solution 1 by TheBeautyofMath==
 +
https://youtu.be/JMxOWyF3i20
 +
 +
~IceMatrix
 +
 +
==See also==
 +
{{AIME box|year=2023|num-b=4|num-a=6|n=I}}
 +
 +
[[Category:Intermediate Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:31, 17 January 2024

Problem

Let $P$ be a point on the circle circumscribing square $ABCD$ that satisfies $PA \cdot PC = 56$ and $PB \cdot PD = 90.$ Find the area of $ABCD.$

Solution 1 (Ptolemy's Theorem)

Ptolemy's theorem states that for cyclic quadrilateral $WXYZ$, $WX\cdot YZ + XY\cdot WZ = WY\cdot XZ$.

We may assume that $P$ is between $B$ and $C$. Let $PA = a$, $PB = b$, $PC = c$, $PD = d$, and $AB = s$. We have $a^2 + c^2 = AC^2 = 2s^2$, because $AC$ is a diameter of the circle. Similarly, $b^2 + d^2 = 2s^2$. Therefore, $(a+c)^2 = a^2 + c^2 + 2ac = 2s^2 + 2(56) = 2s^2 + 112$. Similarly, $(b+d)^2 = 2s^2 + 180$.

By Ptolemy's Theorem on $PCDA$, $as + cs = ds\sqrt{2}$, and therefore $a + c = d\sqrt{2}$. By Ptolemy's on $PBAD$, $bs + ds = as\sqrt{2}$, and therefore $b + d = a\sqrt{2}$. By squaring both equations, we obtain \begin{alignat*}{8} 2d^2 &= (a+c)^2 &&= 2s^2 + 112, \\ 2a^2 &= (b+d)^2 &&= 2s^2 + 180. \end{alignat*} Thus, $a^2 = s^2 + 90$, and $d^2 = s^2 + 56$. Plugging these values into $a^2 + c^2 = b^2 + d^2 = 2s^2$, we obtain $c^2 = s^2 - 90$, and $b^2 = s^2 - 56$. Now, we can solve using $a$ and $c$ (though using $b$ and $d$ yields the same solution for $s$). \begin{align*} ac = (\sqrt{s^2 - 90})(\sqrt{s^2 + 90}) &= 56 \\ (s^2 + 90)(s^2 - 90) &= 56^2 \\ s^4 &= 90^2 + 56^2 = 106^2 \\ s^2 &= \boxed{106}. \end{align*} ~mathboy100

Solution 2 (Areas and Pythagorean Theorem)

By the Inscribed Angle Theorem, we conclude that $\triangle PAC$ and $\triangle PBD$ are right triangles.

Let the brackets denote areas. We are given that \begin{alignat*}{8} 2[PAC] &= PA \cdot PC &&= 56, \\ 2[PBD] &= PB \cdot PD &&= 90. \end{alignat*} Let $O$ be the center of the circle, $X$ be the foot of the perpendicular from $P$ to $\overline{AC},$ and $Y$ be the foot of the perpendicular from $P$ to $\overline{BD},$ as shown below: [asy] /* Made by MRENTHUSIASM */  size(200); pair A, B, C, D, O, P, X, Y; A = (-sqrt(106)/2,sqrt(106)/2); B = (-sqrt(106)/2,-sqrt(106)/2); C = (sqrt(106)/2,-sqrt(106)/2); D = (sqrt(106)/2,sqrt(106)/2); O = origin;  path p; p = Circle(O,sqrt(212)/2); draw(p);  P = intersectionpoints(Circle(A,4),p)[1]; X = foot(P,A,C); Y = foot(P,B,D);  draw(A--B--C--D--cycle); draw(P--A--C--cycle,red); draw(P--B--D--cycle,blue); draw(P--X,red+dashed); draw(P--Y,blue+dashed); markscalefactor=0.075; draw(rightanglemark(A,P,C),red); draw(rightanglemark(P,X,C),red); draw(rightanglemark(B,P,D),blue); draw(rightanglemark(P,Y,D),blue); dot("$A$", A, 1.5*NW, linewidth(4)); dot("$B$", B, 1.5*SW, linewidth(4)); dot("$C$", C, 1.5*SE, linewidth(4)); dot("$D$", D, 1.5*NE, linewidth(4)); dot("$P$", P, 1.5*dir(P), linewidth(4)); dot("$X$", X, 1.5*dir(20), linewidth(4)); dot("$Y$", Y, 1.5*dir(Y-P), linewidth(4)); dot("$O$", O, 1.5*E, linewidth(4)); [/asy] Let $d$ be the diameter of $\odot O.$ It follows that \begin{alignat*}{8} 2[PAC] &= d\cdot PX &&= 56, \\ 2[PBD] &= d\cdot PY &&= 90. \end{alignat*} Moreover, note that $OXPY$ is a rectangle. By the Pythagorean Theorem, we have \[PX^2+PY^2=PO^2.\] We rewrite this equation in terms of $d:$ \[\left(\frac{56}{d}\right)^2+\left(\frac{90}{d}\right)^2=\left(\frac d2\right)^2,\] from which $d^2=212.$ Therefore, we get \[[ABCD] = \frac{d^2}{2} = \boxed{106}.\] ~MRENTHUSIASM

Solution 3 (Similar Triangles)

[asy] /* Made by MRENTHUSIASM */  size(200); pair A, B, C, D, O, P, X, Y; A = (-sqrt(106)/2,sqrt(106)/2); B = (-sqrt(106)/2,-sqrt(106)/2); C = (sqrt(106)/2,-sqrt(106)/2); D = (sqrt(106)/2,sqrt(106)/2); O = origin;  path p; p = Circle(O,sqrt(212)/2); draw(p);  P = intersectionpoints(Circle(A,4),p)[1]; X = foot(P,A,C); Y = foot(P,B,D);  draw(A--B--C--D--cycle); draw(P--A--C--cycle,red); draw(P--B--D--cycle,blue); draw(P--X,red+dashed); draw(P--Y,blue+dashed); markscalefactor=0.075; draw(rightanglemark(A,P,C),red); draw(rightanglemark(P,X,C),red); draw(rightanglemark(B,P,D),blue); draw(rightanglemark(P,Y,D),blue); dot("$A$", A, 1.5*NW, linewidth(4)); dot("$B$", B, 1.5*SW, linewidth(4)); dot("$C$", C, 1.5*SE, linewidth(4)); dot("$D$", D, 1.5*NE, linewidth(4)); dot("$P$", P, 1.5*dir(P), linewidth(4)); dot("$X$", X, 1.5*dir(20), linewidth(4)); dot("$Y$", Y, 1.5*dir(Y-P), linewidth(4)); dot("$O$", O, 1.5*E, linewidth(4)); [/asy] Let the center of the circle be $O$, and the radius of the circle be $r$. Since $ABCD$ is a rhombus with diagonals $2r$ and $2r$, its area is $\dfrac{1}{2}(2r)(2r) = 2r^2$. Since $AC$ and $BD$ are diameters of the circle, $\triangle APC$ and $\triangle BPD$ are right triangles. Let $X$ and $Y$ be the foot of the altitudes to $AC$ and $BD$, respectively. We have \[[\triangle APC] = \frac{1}{2}(PA)(PC) = \frac{1}{2}(PX)(AC),\] so $PX = \dfrac{(PA)(PC)}{AC} = \dfrac{28}{r}$. Similarly, \[[\triangle BPD] = \frac{1}{2}(PB)(PD) = \frac{1}{2}(PY)(PB),\] so $PY = \dfrac{(PB)(PD)}{BD} = \dfrac{45}{r}$. Since $\triangle APX \sim \triangle PCX,$ \[\frac{AX}{PX} = \frac{PX}{CX}\] \[\frac{AO - XO}{PX} = \frac{PX}{OC + XO}.\] But $PXOY$ is a rectangle, so $PY = XO$, and our equation becomes \[\frac{r - PY}{PX} = \frac{PX}{r + PY}.\] Cross multiplying and rearranging gives us $r^2 = PX^2 + PY^2 = \left(\dfrac{28}{r}\right)^2 + \left(\dfrac{45}{r}\right)^2$, which rearranges to $r^4 = 2809$. Therefore $[ABCD] = 2r^2 = \boxed{106}$.

~Cantalon

Solution 4 (Heights and Half-Angle Formula)

Drop a height from point $P$ to line $\overline{AC}$ and line $\overline{BC}$. Call these two points to be $X$ and $Y$, respectively. Notice that the intersection of the diagonals of $\square ABCD$ meets at a right angle at the center of the circumcircle, call this intersection point $O$.

Since $OXPY$ is a rectangle, $OX$ is the distance from $P$ to line $\overline{BD}$. We know that $\tan{\angle{POX}} = \frac{PX}{XO} = \frac{28}{45}$ by triangle area and given information. Then, notice that the measure of $\angle{OCP}$ is half of $\angle{XOP}$.

Using the half-angle formula for tangent,

\begin{align*} \frac{(2 \cdot \tan{\angle{OCP}})}{(1-\tan^2{\angle{OCP}})} = \tan{\angle{POX}} = \frac{28}{45} \\ 14\tan^2{\angle{OCP}} + 45\tan{\angle{OCP}} - 14 = 0 \end{align*}

Solving the equation above, we get that $\tan{\angle{OCP}} = -7/2$ or $2/7$. Since this value must be positive, we pick $\frac{2}{7}$. Then, $\frac{PA}{PC} = 2/7$ (since $\triangle CAP$ is a right triangle with line $\overline{AC}$ the diameter of the circumcircle) and $PA * PC = 56$. Solving we get $PA = 4$, $PC = 14$, giving us a diagonal of length $\sqrt{212}$ and area $\boxed{106}$.

~Danielzh

Solution 5 (Analytic Geometry)

Denote by $x$ the half length of each side of the square. We put the square to the coordinate plane, with $A = \left( x, x \right)$, $B = \left( - x , x \right)$, $C = \left( - x , - x \right)$, $D = \left( x , - x \right)$.

The radius of the circumcircle of $ABCD$ is $\sqrt{2} x$. Denote by $\theta$ the argument of point $P$ on the circle. Thus, the coordinates of $P$ are $P = \left( \sqrt{2} x \cos \theta , \sqrt{2} x \sin \theta \right)$.

Thus, the equations $PA \cdot PC = 56$ and $PB \cdot PD = 90$ can be written as \begin{align*} \sqrt{\left( \sqrt{2} x \cos \theta - x \right)^2 + \left( \sqrt{2} x \sin \theta - x \right)^2} \cdot \sqrt{\left( \sqrt{2} x \cos \theta + x \right)^2 + \left( \sqrt{2} x \sin \theta + x \right)^2} & = 56 \\ \sqrt{\left( \sqrt{2} x \cos \theta + x \right)^2 + \left( \sqrt{2} x \sin \theta - x \right)^2} \cdot \sqrt{\left( \sqrt{2} x \cos \theta - x \right)^2 + \left( \sqrt{2} x \sin \theta + x \right)^2} & = 90 \end{align*}

These equations can be reformulated as \begin{align*} x^4 \left( 4 - 2 \sqrt{2} \left( \cos \theta + \sin \theta \right) \right) \left( 4 + 2 \sqrt{2} \left( \cos \theta + \sin \theta \right) \right) & = 56^2  \\ x^4 \left( 4 + 2 \sqrt{2} \left( \cos \theta - \sin \theta \right) \right) \left( 4 - 2 \sqrt{2} \left( \cos \theta - \sin \theta \right) \right) & = 90^2 \end{align*}

These equations can be reformulated as \begin{align*} 2 x^4 \left( 1 - 2 \cos \theta  \sin \theta \right) & = 28^2 \hspace{1cm} (1) \\ 2 x^4 \left( 1 + 2 \cos \theta  \sin \theta \right) & = 45^2 \hspace{1cm} (2) \end{align*}

Taking $\frac{(1)}{(2)}$, by solving the equation, we get \[ 2 \cos \theta \sin \theta = \frac{45^2 - 28^2}{45^2 + 28^2} . \hspace{1cm} (3) \]

Plugging (3) into (1), we get \begin{align*} {\rm Area} \ ABCD & = \left( 2 x \right)^2 \\ & = 4 \sqrt{\frac{28^2}{2 \left( 1 - 2 \cos \theta \sin \theta \right)}} \\ & = 2 \sqrt{45^2 + 28^2} \\ & = 2 \cdot 53 \\ & = \boxed{\textbf{(106) }} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Solution 6 (Law of Cosines)

WLOG, let $P$ be on minor arc $\overarc {AB}$. Let $r$ and $O$ be the radius and center of the circumcircle respectively, and let $\theta = \angle AOP$.

By the Pythagorean Theorem, the area of the square is $2r^2$. We can use the Law of Cosines on isosceles triangles $\triangle AOP, \, \triangle COP, \, \triangle BOP, \, \triangle DOP$ to get

\begin{align*} 	 PA^2 &= 2r^2(1 - \cos \theta), \\	 PC^2 &= 2r^2(1 - \cos (180  - \theta)) = 2r^2(1 + \cos \theta), \\	 PB^2 &= 2r^2(1 - \cos (90 - \theta)) = 2r^2(1 - \sin \theta), \\	 PD^2 &= 2r^2(1 - \cos (90 + \theta)) = 2r^2(1 + \sin \theta).	 \end{align*}

Taking the products of the first two and last two equations, respectively, \[56^2 = (PA \cdot PC)^2 = 4r^4(1 - \cos \theta)(1 + \cos \theta) = 4r^4(1 - \cos^2 \theta) = 4r^4 \sin^2 \theta,\] and \[90^2 = (PB \cdot PD)^2 = 4r^4(1 - \sin \theta)(1 + \sin \theta) = 4r^4(1 - \sin^2 \theta) = 4r^4 \cos^2 \theta.\] Adding these equations, \[56^2 + 90^2 = 4r^4,\] so \[2r^2 = \sqrt{56^2+90^2} = 2\sqrt{28^2+45^2} = 2\sqrt{2809} = 2 \cdot 53 = \boxed{106}.\] ~OrangeQuail9

Solution 7 (Subtended Chords)

First draw a diagram. [asy] pair A, B, C, D, O, P; A = (0,sqrt(106)); B = (0,0); C = (sqrt(106),0); D = (sqrt(106),sqrt(106)); O = (sqrt(106)/2, sqrt(106)/2); P = intersectionpoint(circle(A, sqrt(212)*sin(atan(28/45)/2)), circle(O, sqrt(212)/2)); draw(A--B--C--D--cycle); draw(circle(O, sqrt(212)/2)); label("$A$", A, NW); label("$B$", B, SW); label("$C$", C, SE); label("$D$", D, NE); label("$P$", P, NW); label("$O$", O, 1.5*S); label("$\theta$", O, dir(120)*5); draw(P--A--C--cycle, red); draw(P--B--D--cycle, blue); draw(P--O); draw(anglemark(P,O,A,30)); dot(P); dot(O); [/asy] Let's say that the radius is $r$. Then the area of the $ABCD$ is $(\sqrt2r)^2 = 2r^2$ Using the formula for the length of a chord subtended by an angle, we get \[PA = 2r\sin\left(\dfrac{\theta}2\right)\] \[PC = 2r\sin\left(\dfrac{180-\theta}2\right) = 2r\sin\left(90 - \dfrac{\theta}2\right) = 2r\cos\left(\dfrac{\theta}2\right)\] Multiplying and simplifying these 2 equations gives \[PA \cdot PC = 4r^2 \sin \left(\dfrac{\theta}2 \right) \cos \left(\dfrac{\theta}2 \right) = 2r^2 \sin\left(\theta \right) = 56\] Similarly $PB = 2r\sin\left(\dfrac{90 +\theta}2\right)$ and $PD =2r\sin\left(\dfrac{90 -\theta}2\right)$. Again, multiplying gives \[PB \cdot PD = 4r^2 \sin\left(\dfrac{90 +\theta}2\right) \sin\left(\dfrac{90 -\theta}2\right) = 4r^2 \sin\left(90 -\dfrac{90 -\theta}2\right) \sin\left(\dfrac{90 -\theta}2\right)\] \[=4r^2 \sin\left(\dfrac{90 -\theta}2\right) \cos\left(\dfrac{90 -\theta}2\right) = 2r^2 \sin\left(90 - \theta \right) = 2r^2 \cos\left(\theta \right) = 90\] Dividing $2r^2 \sin \left(\theta \right)$ by $2r^2 \cos \left( \theta \right)$ gives $\tan \left(\theta \right) = \dfrac{28}{45}$, so $\theta = \tan^{-1} \left(\dfrac{28}{45} \right)$. Pluging this back into one of the equations, gives \[2r^2 = \dfrac{90}{\cos\left(\tan^{-1}\left(\dfrac{28}{45}\right)\right)}\] If we imagine a $28$-$45$-$53$ right triangle, we see that if $28$ is opposite and $45$ is adjacent, $\cos\left(\theta\right) = \dfrac{\text{adj}}{\text{hyp}} = \dfrac{45}{53}$. Now we see that \[2r^2 = \dfrac{90}{\frac{45}{53}} = \boxed{106}.\] ~Voldemort101

Solution 8 (Coordinates and Algebraic Manipulation)

[asy] pair A,B,C,D,P; A=(-3,3); B=(3,3); C=(3,-3); D=(-3,-3); draw(A--B--C--D--cycle); label(A,"$A$",NW); label(B,"$B$",NE); label(C,"$C$",SE); label(D,"$D$",SW); draw(circle((0,0),4.24264068712)); P=(-1,4.12310562562); label(P,"$P$", NW); pen k=red+dashed; draw(P--A,k); draw(P--B,k); draw(P--C,k); draw(P--D,k); dot(P); [/asy] Let $P=(a,b)$ on the upper quarter of the circle, and let $k$ be the side length of the square. Hence, we want to find $k^2$. Let the center of the circle be $(0,0)$. The two equations would thus become: \[\left(\left(a+\dfrac{k}2\right)^2+\left(b-\dfrac{k}2\right)^2\right)\left(\left(a-\dfrac{k}2\right)^2+\left(b+\dfrac{k}2\right)^2\right)=56^2\] \[\left(\left(a-\dfrac{k}2\right)^2+\left(b-\dfrac{k}2\right)^2\right)\left(\left(a+\dfrac{k}2\right)^2+\left(b+\dfrac{k}2\right)^2\right)=90^2\] Now, let $m=\left(a+\dfrac{k}2\right)^2$, $n=\left(a-\dfrac{k}2\right)^2$, $o=\left(b+\dfrac{k}2\right)^2$, and $p=\left(b-\dfrac{k}2\right)^2$. Our equations now change to $(m+p)(n+o)=56^2=mn+op+mo+pn$ and $(n+p)(m+o)=90^2=mn+op+no+pm$. Subtracting the first from the second, we have $pm+no-mo-pn=p(m-n)-o(m-n)=(m-n)(p-o)=34\cdot146$. Substituting back in and expanding, we have $2ak\cdot-2bk=34\cdot146$, so $abk^2=-17\cdot73$. We now have one of our terms we need ($k^2$). Therefore, we only need to find $ab$ to find $k^2$. We now write the equation of the circle, which point $P$ satisfies: \[a^2+b^2=\left(\dfrac{k\sqrt{2}}{2}\right)^2=\dfrac{k^2}2\] We can expand the second equation, yielding \[\left(a^2+b^2+\dfrac{k^2}2+(ak+bk)\right)\left(a^2+b^2+\dfrac{k^2}2-(ak+bk)\right)=(k^2+k(a+b))(k^2-k(a+b))=8100.\] Now, with difference of squares, we get $k^4-k^2\cdot(a+b)^2=k^2(k^2-(a+b)^2)=8100$. We can add $2abk^2=-17\cdot73\cdot2=-2482$ to this equation, which we can factor into $k^2(k^2-(a+b)^2+2ab)=k^2(k^2-(a^2+b^2))=8100-2482$. We realize that $a^2+b^2$ is the same as the equation of the circle, so we plug its equation in: $k^2\left(k^2-\dfrac{k^2}2\right)=5618$. We can combine like terms to get $k^2\cdot\dfrac{k^2}2=5618$, so $(k^2)^2=11236$. Since the answer is an integer, we know $11236$ is a perfect square. Since it is even, it is divisible by $4$, so we can factor $11236=2^2\cdot2809$. With some testing with approximations and last-digit methods, we can find that $53^2=2809$. Therefore, taking the square root, we find that $k^2$, the area of square $ABCD$, is $2\cdot53=\boxed{106}$.

~wuwang2002

Solution 9 (Law of Sines)

WLOG, let $P$ be on minor arc $AD.$ Draw in $AP$, $BP$, $CP$, $DP$ and let $\angle ABP = x.$ We can see, by the inscribed angle theorem, that $\angle APB = \angle ACB = 45$, and $\angle CPD = \angle CAD = 45.$ Then, $\angle PAB = 135-x$, $\angle PCD = \angle PAD = (135-x)-90 = 45-x$, and $\angle PDC = 90+x.$ Letting $(PA, PB, PC, PD, AB) = (a,b,c,d,s)$, we can use the law of sines on triangles $PAB$ and $PCD$ to get \[s\sqrt{2} = \frac{a}{\sin(x)} = \frac{b}{\sin(135-x)} = \frac{c}{\sin(90+x)} = \frac{d}{\sin(45-x)}.\] Making all the angles in the above equation acute gives \[s\sqrt{2} = \frac{a}{\sin(x)} = \frac{b}{\sin(45+x)} = \frac{c}{\sin(90-x)} = \frac{d}{\sin(45-x)}.\]

Note that we are looking for $s^{2}.$ We are given that $ac = 56$ and $bd = 90.$ This means that $s^{2}\sin(x)\sin(90-x) = 28$ and $s^{2}\sin(45+x)\sin(45-x) = 45.$ However, \[\sin(x)\sin(90-x) = \sin(x)\cos(x) = \frac{\sin(2x)}{2}\] and \[\sin(45+x)\sin(45-x) = \frac{(\cos(x) + \sin(x))(\cos(x) - \sin(x))}{2} = \frac{\cos^{2}(x) - \sin^{2}(x)}{2} = \frac{\cos(2x)}{2}.\] Therefore, $s^{2}\sin(2x) = 56$ and $s^{2}\cos(2x) = 90.$ Therefore, by the Pythagorean Identity, \[s^{2} = \sqrt{(s^{2}\sin(2x))^{2} + (s^{2}\cos(2x))^{2}} = \sqrt{56^{2} + 90^{2}} = \boxed{106}.\]

~pianoboy

Solution 10 (Areas and Trigonometry)

Similar to Solution 6, let $P$ be on minor arc $\overarc {AB}$, $r$ and $O$ be the radius and center of the circumcircle respectively, and $\theta = \angle AOP$. Since $\triangle APC$ is a right triangle, $PA \cdot PC$ equals the hypotenuse, $2r$, times its altitude, which can be represented as $r \sin \theta$. Therefore, $2r^2 \sin \theta = 56$. Applying similar logic to $\triangle BPD$, we get $2r^2 \sin (90^\circ - \theta) = 2r^2 \cos \theta = 90$.

Dividing the two equations, we have \begin{align*} \frac{\sin \theta}{\cos \theta} &= \frac{56}{90} \\ 56 \cos \theta &= 90 \sin \theta \\ (56 \cos \theta)^2 &= (90 \sin \theta)^2. \end{align*} Adding $(56 \sin \theta)^2$ to both sides allows us to get rid of $\cos \theta$: \begin{align*} (56 \cos \theta)^2 + (56 \sin \theta)^2 &= (90 \sin \theta)^2 + (56 \sin \theta)^2 \\ 56^2 &= (90^2 + 56^2)(\sin \theta)^2 \\ \frac{56^2}{90^2 + 56^2} &= (\sin \theta)^2 \\ \frac{28}{53} &= \sin \theta. \end{align*} Therefore, we have $2r^2\left(\frac{28}{53}\right) = 56$, and since the area of the square can be represented as $2r^2$, the answer is $56 \cdot \frac{53}{28} = \boxed{106}$.

~phillipzeng

Video Solution 1 by TheBeautyofMath

https://youtu.be/JMxOWyF3i20

~IceMatrix

See also

2023 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png