Difference between revisions of "2023 AMC 10A Problems/Problem 14"

(Solution 1)
(Solution 2)
(20 intermediate revisions by 12 users not shown)
Line 1: Line 1:
 +
==Problem==
 +
 
A number is chosen at random from among the first <math>100</math> positive integers, and a positive integer divisor of that number is then chosen at random. What is the probability that the chosen divisor is divisible by <math>11</math>?
 
A number is chosen at random from among the first <math>100</math> positive integers, and a positive integer divisor of that number is then chosen at random. What is the probability that the chosen divisor is divisible by <math>11</math>?
  
Line 5: Line 7:
 
==Solution 1==
 
==Solution 1==
  
Among the first <math>100</math> positive integers, there are 9 multiples of 11. We can now perform a little casework on the probability of choosing a divisor which is a multiple of 11 for each of these 9, and see that the probability is 1/2 for each. The probability of choosing these 9 multiples in the first place is <math>\frac{9}{100}</math>, so the final probability is <math>\frac{9}{100} \cdot \frac{1}{2} = \frac{9}{200}</math>, so the answer is <math>\boxed{B}.</math>
+
In order for the divisor chosen to be a multiple of <math>11</math>, the original number chosen must also be a multiple of <math>11</math>. Among the first <math>100</math> positive integers, there are 9 multiples of 11; 11, 22, 33, 44, 55, 66, 77, 88, 99. We can now perform a little casework on the probability of choosing a divisor which is a multiple of 11 for each of these 9, and see that the probability is 1/2 for each. The probability of choosing these 9 multiples in the first place is <math>\frac{9}{100}</math>, so the final probability is <math>\frac{9}{100} \cdot \frac{1}{2} = \frac{9}{200}</math>, so the answer is <math>\boxed{\textbf{(B)}~\frac{9}{200}}.</math>
\\
+
 
11: 11 - 1/2<math>\\
+
<math>11 = 11 - 1/2\\
 
22 = 2 * 11: 11, 22 - 1/2\\
 
22 = 2 * 11: 11, 22 - 1/2\\
 
33 = 3 * 11: 11, 33 - 1/2\\
 
33 = 3 * 11: 11, 33 - 1/2\\
Line 17: Line 19:
 
99 = 3^2 * 11: 11, 33, 99 - 1/2</math>
 
99 = 3^2 * 11: 11, 33, 99 - 1/2</math>
  
~vaisri
+
~vaisri ~walmartbrian ~Shontai
 +
 
 +
==Solution 2==
 +
 
 +
As stated in Solution 1, the <math>9</math> multiples of <math>11</math> under <math>100</math> are <math>11</math>, <math>22</math>, <math>33</math>, <math>44</math>, <math>55</math>, <math>66</math>, <math>77</math>, <math>88</math>, <math>99</math>. Because all of these numbers are multiples of <math>11</math> to the first power and first power only, their factors can either have <math>11</math> as a factor (<math>11^{1}</math>) or not have <math>11</math> as a factor (<math>11^{0}</math>), resulting in a <math>\frac{1}{2}</math> chance of a factor chosen being divisible by <math>11</math>. The chance of choosing any factor of <math>11</math> under <math>100</math> is <math>\frac{9}{100}</math>, so the final answer is <math>\frac{9}{100} \cdot \frac{1}{2} = \boxed{\textbf{(B)}~\frac{9}{200}}.</math>
 +
 
 +
~Failure.net
 +
 
 +
==Solution 3 (generalized)==
 +
Let <math>N</math> be the positive integer in question. Since <math>N</math> is a multiple of <math>11</math>, we can write <math>N = 11^{e_1}p_1^{e_2}\cdots p_{k-1}^{e_k},</math> the prime factorization of <math>N</math>. To find the total number of divisors divisible by <math>11</math>, observe that there are <math>(e_2 + 1)(e_3 + 1)\cdots (e_k  + 1)</math> divisors not divisible by <math>11</math>. For each power of <math>11</math> greater than <math>1</math>, of which there are <math>e_1</math>, it can be paired with any of these other divisors. Therefore, there are
 +
<cmath>e_1(e_2+1)(e_3 + 1)\cdots (e_k + 1)</cmath>
 +
divisors of <math>N</math> that are divisible by <math>11</math>. The total number of divisors of <math>11</math> is <cmath>(e_1 + 1)(e_2 + 1)\cdots (e_k + 1),</cmath> so the probability of choosing a divisor that is divisible by <math>11</math> is
 +
<cmath>\frac{e_1(e_2+1)(e_3 + 1)\cdots (e_k + 1)}{(e_1 + 1)(e_2 + 1)\cdots (e_k + 1)} = \frac{e_1}{e_1 + 1}.</cmath>
 +
For each positive integer less than or equal to <math>100</math>, the highest power of <math>11</math> that divides it is <math>11</math>, so <math>e_1 = 1</math>, meaning that the probability of choosing a divisor (that is divisible by <math>11</math>) of a fixed <math>N</math> is <math>\frac{1}{2}.</math> The probability of choosing any <math>N</math> from the first <math>100</math> positive integers is <math>\frac{1}{100},</math> so the probability of choosing any of these divisors is <math>\frac{1}{100}\cdot \frac{1}{2}.</math> There are <math>9</math> multiples of <math>11</math> less than or equal to <math>100</math>, so the total probability is
 +
<cmath>9\cdot \frac{1}{100}\cdot \frac{1}{2} = \boxed{\textbf{(B)}\ \frac{9}{200}}.</cmath>
 +
 
 +
-Benedict T (countmath1)
 +
 
 +
==Video Solution by Power Solve (easy to digest!)==
 +
https://www.youtube.com/watch?v=jkfsBYzBJbQ
 +
 
 +
== Video Solution by CosineMethod [🔥Fast and Easy🔥]==
 +
 
 +
https://www.youtube.com/watch?v=uaf46N6qP54
 +
 
 +
==Video Solution==
 +
 
 +
https://youtu.be/O_P3E9hDrYY
 +
 
 +
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
 +
 
 +
==Video Solution by Math-X (First understand the problem!!!)==
 +
https://youtu.be/N2lyYRMuZuk?si=-CyrdswJABoMrnWk&t=825
 +
~Math-X
 +
 
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2023|ab=A|num-b=13|num-a=15}}
 +
{{MAA Notice}}

Revision as of 09:57, 6 February 2024

Problem

A number is chosen at random from among the first $100$ positive integers, and a positive integer divisor of that number is then chosen at random. What is the probability that the chosen divisor is divisible by $11$?

$\textbf{(A)}~\frac{4}{100}\qquad\textbf{(B)}~\frac{9}{200} \qquad \textbf{(C)}~\frac{1}{20} \qquad\textbf{(D)}~\frac{11}{200}\qquad\textbf{(E)}~\frac{3}{50}$

Solution 1

In order for the divisor chosen to be a multiple of $11$, the original number chosen must also be a multiple of $11$. Among the first $100$ positive integers, there are 9 multiples of 11; 11, 22, 33, 44, 55, 66, 77, 88, 99. We can now perform a little casework on the probability of choosing a divisor which is a multiple of 11 for each of these 9, and see that the probability is 1/2 for each. The probability of choosing these 9 multiples in the first place is $\frac{9}{100}$, so the final probability is $\frac{9}{100} \cdot \frac{1}{2} = \frac{9}{200}$, so the answer is $\boxed{\textbf{(B)}~\frac{9}{200}}.$

$11 = 11 - 1/2\\ 22 = 2 * 11: 11, 22 - 1/2\\ 33 = 3 * 11: 11, 33 - 1/2\\ 44 = 2^2 * 11: 11, 22, 44 - 1/2\\ 55 = 5 * 11: 11, 55 - 1/2\\ 66 = 2 * 3 * 11: 11, 22, 33, 66 - 1/2\\ 77 = 7 * 11: 11, 77 - 1/2\\ 88 = 2^3 * 11: 11, 22, 44, 88 - 1/2\\ 99 = 3^2 * 11: 11, 33, 99 - 1/2$

~vaisri ~walmartbrian ~Shontai

Solution 2

As stated in Solution 1, the $9$ multiples of $11$ under $100$ are $11$, $22$, $33$, $44$, $55$, $66$, $77$, $88$, $99$. Because all of these numbers are multiples of $11$ to the first power and first power only, their factors can either have $11$ as a factor ($11^{1}$) or not have $11$ as a factor ($11^{0}$), resulting in a $\frac{1}{2}$ chance of a factor chosen being divisible by $11$. The chance of choosing any factor of $11$ under $100$ is $\frac{9}{100}$, so the final answer is $\frac{9}{100} \cdot \frac{1}{2} = \boxed{\textbf{(B)}~\frac{9}{200}}.$

~Failure.net

Solution 3 (generalized)

Let $N$ be the positive integer in question. Since $N$ is a multiple of $11$, we can write $N = 11^{e_1}p_1^{e_2}\cdots p_{k-1}^{e_k},$ the prime factorization of $N$. To find the total number of divisors divisible by $11$, observe that there are $(e_2 + 1)(e_3 + 1)\cdots (e_k  + 1)$ divisors not divisible by $11$. For each power of $11$ greater than $1$, of which there are $e_1$, it can be paired with any of these other divisors. Therefore, there are \[e_1(e_2+1)(e_3 + 1)\cdots (e_k + 1)\] divisors of $N$ that are divisible by $11$. The total number of divisors of $11$ is \[(e_1 + 1)(e_2 + 1)\cdots (e_k + 1),\] so the probability of choosing a divisor that is divisible by $11$ is \[\frac{e_1(e_2+1)(e_3 + 1)\cdots (e_k + 1)}{(e_1 + 1)(e_2 + 1)\cdots (e_k + 1)} = \frac{e_1}{e_1 + 1}.\] For each positive integer less than or equal to $100$, the highest power of $11$ that divides it is $11$, so $e_1 = 1$, meaning that the probability of choosing a divisor (that is divisible by $11$) of a fixed $N$ is $\frac{1}{2}.$ The probability of choosing any $N$ from the first $100$ positive integers is $\frac{1}{100},$ so the probability of choosing any of these divisors is $\frac{1}{100}\cdot \frac{1}{2}.$ There are $9$ multiples of $11$ less than or equal to $100$, so the total probability is \[9\cdot \frac{1}{100}\cdot \frac{1}{2} = \boxed{\textbf{(B)}\ \frac{9}{200}}.\]

-Benedict T (countmath1)

Video Solution by Power Solve (easy to digest!)

https://www.youtube.com/watch?v=jkfsBYzBJbQ

Video Solution by CosineMethod [🔥Fast and Easy🔥]

https://www.youtube.com/watch?v=uaf46N6qP54

Video Solution

https://youtu.be/O_P3E9hDrYY

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/N2lyYRMuZuk?si=-CyrdswJABoMrnWk&t=825

~Math-X


See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png