2023 AMC 10A Problems/Problem 17

Revision as of 21:52, 9 November 2023 by Therealpunhong (talk | contribs) (Problem)

Problem

Let $ABCD$ be a rectangle with $AB = 30$ and $BC = 28$. Point $P$ and $Q$ lie on $\overline{BC}$ and $\overline{CD}$ respectively so that all sides of $\triangle{ABP}, \triangle{PCQ},$ and $\triangle{QDA}$ have integer lengths. What is the perimeter of $\triangle{APQ}$?

$\textbf{(A) } 84 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 88 \qquad \textbf{(D) } 90 \qquad \textbf{(E) } 92$

Solution

We know that all side lengths are integers, so we can test Pythagorean triples for all triangles.

First, we focus on $\triangle{ABP}$. The length of $AB$ is $30$, and the possible Pythagorean triples $\triangle{ABP}$ can be are $(3, 4, 5), (5, 12, 13), (8, 15, 17)$, where the value of one leg is a factor of $30$. Testing these cases, we get that only $(8, 15, 17)$ is a valid solution because the other triangles result in another leg that is greater than $28$, the length of $\overline{BC}$. Thus, we know that $BP = 16$ and $AP = 34$.

Next, we move on to $\triangle{QDA}$. The length of $AD$ is $28$, and the possible triples are $(3, 4, 5)$ and $(7, 24, 25)$. Testing cases again, we get that $(3, 4, 5)$ is our triple. We get the value of $DQ = 21$, and $AQ = 35$.

We know that $CQ = CD - DQ$ which is $9$, and $CP = BC - BP$ which is $12$. $\triangle{CPQ}$ is therefore a right triangle with side length ratios ${3, 4, 5}$, and the hypotenuse is equal to $15$. $\triangle{APQ}$ has side lengths $34, 35,$ and $15,$ so the perimeter is equal to $34 + 35 + 15 = \boxed{\textbf{(A) } 84}.$

~ Gabe Horn

See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png


See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png