Difference between revisions of "2023 AMC 10A Problems/Problem 8"

m
Line 8: Line 8:
 
==Solution 1 (Substitution)==
 
==Solution 1 (Substitution)==
  
To solve this question, you can use <math>y = mx + b</math> where the <math>x</math> is the Fahrenheit and the <math>y</math> is the Breadus. We have <math>(110,0)</math> and <math>(350,100)</math>. We want to find <math>(200,y)</math>. The slope for these two points is <math>\frac{5}{12}</math>; <math>y = \frac{5}{12}x + b</math>. Solving for <math>b</math> using <math>(110, 0)</math>, <math>\frac{550}{12} = -b</math>. We get <math>b = \frac{-275}{6}</math>. Plugging in <math>(200, y), \frac{1000}{12}-\frac{550}{12}=y</math>. Simplifying, <math>\frac{450}{12} = \boxed{\textbf{(D) }37.5}</math>
+
To solve this question, you can use <math>y = mx + b</math> where the <math>x</math> is Fahrenheit and the <math>y</math> is Breadus. We have <math>(110,0)</math> and <math>(350,100)</math>. We want to find the value of <math>y</math> in <math>(200,y)</math> that falls on this line. The slope for these two points is <math>\frac{5}{12}</math>; <math>y = \frac{5}{12}x + b</math>. Solving for <math>b</math> using <math>(110, 0)</math>, <math>\frac{550}{12} = -b</math>. We get <math>b = \frac{-275}{6}</math>. Plugging in <math>(200, y), \frac{1000}{12}-\frac{550}{12}=y</math>. Simplifying, <math>\frac{450}{12} = \boxed{\textbf{(D) }37.5}</math>
  
 
~walmartbrian
 
~walmartbrian
Line 20: Line 20:
 
==Solution 3 (Intuitive)==
 
==Solution 3 (Intuitive)==
  
From <math>110</math> to <math>350</math> degrees Fahrenheit, the Breadus scale goes from <math>1</math> to <math>100</math>. <math>110</math> to <math>350</math> degrees is a a span of <math>240</math>, and we can use this to determine how many Fahrenheit each Breadus unit is worth. <math>240</math> divided by <math>100</math> is <math>2.4</math>, so each Breadus unit is <math>2.4</math> Fahrenheit, starting at <math>110</math> Fahrenheit. For example, <math>1</math> degree on the Breadus scale is <math>110 + 2.4</math>, or <math>112.4</math> Fahrenheit. Using this information, we can figure out how many Breadus degrees <math>200</math> Fahrenheit is. <math>200-110</math> is <math>90</math>, so we divide <math>90</math> by <math>2.4</math> to find the answer, which is <math>\boxed{\textbf{(D) }37.5}</math>
+
From <math>110</math> to <math>350</math> degrees Fahrenheit, the Breadus scale goes from <math>1</math> to <math>100</math>. <math>110</math> to <math>350</math> degrees is a span of <math>240</math>, and we can use this to determine how many Fahrenheit each Breadus unit is worth. <math>240</math> divided by <math>100</math> is <math>2.4</math>, so each Breadus unit is <math>2.4</math> Fahrenheit, starting at <math>110</math> Fahrenheit. For example, <math>1</math> degree on the Breadus scale is <math>110 + 2.4</math>, or <math>112.4</math> Fahrenheit. Using this information, we can figure out how many Breadus degrees <math>200</math> Fahrenheit is. <math>200-110</math> is <math>90</math>, so we divide <math>90</math> by <math>2.4</math> to find the answer, which is <math>\boxed{\textbf{(D) }37.5}</math>
  
 
~MercilessAnimations
 
~MercilessAnimations

Revision as of 15:40, 10 November 2023

Problem

Barb the baker has developed a new temperature scale for her bakery called the Breadus scale, which is a linear function of the Fahrenheit scale. Bread rises at $110$ degrees Fahrenheit, which is $0$ degrees on the Breadus scale. Bread is baked at $350$ degrees Fahrenheit, which is $100$ degrees on the Breadus scale. Bread is done when its internal temperature is $200$ degrees Fahrenheit. What is this in degrees on the Breadus scale?

$\textbf{(A) }33\qquad\textbf{(B) }34.5\qquad\textbf{(C) }36\qquad\textbf{(D) }37.5\qquad\textbf{(E) }39$


Solution 1 (Substitution)

To solve this question, you can use $y = mx + b$ where the $x$ is Fahrenheit and the $y$ is Breadus. We have $(110,0)$ and $(350,100)$. We want to find the value of $y$ in $(200,y)$ that falls on this line. The slope for these two points is $\frac{5}{12}$; $y = \frac{5}{12}x + b$. Solving for $b$ using $(110, 0)$, $\frac{550}{12} = -b$. We get $b = \frac{-275}{6}$. Plugging in $(200, y), \frac{1000}{12}-\frac{550}{12}=y$. Simplifying, $\frac{450}{12} = \boxed{\textbf{(D) }37.5}$

~walmartbrian

Solution 2 (Faster)

Let $^\circ B$ denote degrees Breadus. We notice that $200^\circ F$ is $90^\circ F$ degrees to $0^\circ B$, and $150^\circ F$ to $100^\circ B$. This ratio is $90:150=3:5$; therefore, $200^\circ F$ will be $\dfrac3{3+5}=\dfrac38$ of the way from $0$ to $100$, which is $\boxed{\textbf{(D) }37.5.}$

~Technodoggo

Solution 3 (Intuitive)

From $110$ to $350$ degrees Fahrenheit, the Breadus scale goes from $1$ to $100$. $110$ to $350$ degrees is a span of $240$, and we can use this to determine how many Fahrenheit each Breadus unit is worth. $240$ divided by $100$ is $2.4$, so each Breadus unit is $2.4$ Fahrenheit, starting at $110$ Fahrenheit. For example, $1$ degree on the Breadus scale is $110 + 2.4$, or $112.4$ Fahrenheit. Using this information, we can figure out how many Breadus degrees $200$ Fahrenheit is. $200-110$ is $90$, so we divide $90$ by $2.4$ to find the answer, which is $\boxed{\textbf{(D) }37.5}$

~MercilessAnimations

Solution 4

We note that the range of F temperatures that 0-100 Br represents is 350-110 = 240 degF 200degF is (200-110) = 90 degF along the way to getting to 240 degF, the end of this range, or 90/240 = 9/24 = 3/8 = .375 of the way Therefore if we switch to the Br scale, we are .375 of the way to 100 from 0, or at $\boxed{\textbf{(D) 37.5}}$ degBr

~Dilip


Video Solution by Math-X (First understand the problem!!!)

https://youtu.be/cMgngeSmFCY?si=88mPIms6wdZ6-deq&t=1602 ~Math-X



See Also

2023 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png