Difference between revisions of "2023 AMC 12A Problems/Problem 10"

(Solution 1)
Line 7: Line 7:
  
 
~plasta
 
~plasta
 +
 +
== Solution 2==
 +
Let's take the second equation and square root both sides. This will obtain <math>y-x = \pm2y</math>. Solving the case where <math>y-x=+2y</math>, we'd find that <math>x=-y</math>. This is known to be false because both <math>x</math> and <math>y</math> have to be positive, and <math>x=-y</math> implies that at least one of the variables is not positive. So we instead solve the case where <math>y-x=-2y</math>. This means that <math>x=3y</math>. Inputting this value into the first equation, we find:
 +
<cmath>y^3 = (3y)^2</cmath>
 +
<cmath>y^3 = 9y^2</cmath>
 +
<cmath>y=9</cmath>.
 +
This means that <math>x=3y=3(9)=27</math>. Therefore, <math>x+y=9+27=\boxed{36}</math>
 +
 +
~lprado
  
 
==See also==
 
==See also==

Revision as of 20:51, 9 November 2023

Problem

Positive real numbers $x$ and $y$ satisfy $y^3=x^2$ and $(y-x)^2=4y^2$. What is $x+y$? $\textbf{(A) }12\qquad\textbf{(B) }18\qquad\textbf{(C) }24\qquad\textbf{(D) }36\qquad\textbf{(E) }42$

Solution 1

Because $y^3=x^2$, set $x=a^3$, $y=a^2$ ($a\neq 0$). Put them in $(y-x)^2=4y^2$ we get $(a^2(a-1))^2=4a^4$ which implies $a^2-2a+1=4$. Solve the equation to get $a=3$ or $-1$. Since $x$ and $y$ are positive, $a=3$ and $x+y=3^3+3^2=\boxed{\textbf{(D)} 36}$.

~plasta

Solution 2

Let's take the second equation and square root both sides. This will obtain $y-x = \pm2y$. Solving the case where $y-x=+2y$, we'd find that $x=-y$. This is known to be false because both $x$ and $y$ have to be positive, and $x=-y$ implies that at least one of the variables is not positive. So we instead solve the case where $y-x=-2y$. This means that $x=3y$. Inputting this value into the first equation, we find: \[y^3 = (3y)^2\] \[y^3 = 9y^2\] \[y=9\]. This means that $x=3y=3(9)=27$. Therefore, $x+y=9+27=\boxed{36}$

~lprado

See also

2023 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png