Difference between revisions of "2024 AIME I Problems/Problem 9"

Line 8: Line 8:
  
 
Plugging <math>y = mx</math> into the equation for the hyperbola yields <math>x^2 = \frac{120}{6-5m^2}</math> and <math>y^2 = \frac{120m^2}{6-5m^2}.</math> By symmetry of the hyperbola, we know that <math>\left(\frac{BD}{2}\right)^2 = x^2 + y^2,</math> so we wish to find a lower bound for <math>x^2 + y^2 = 120\left(\frac{1+m^2}{6-5m^2}\right).</math> This is equivalent to minimizing <math>\frac{1+m^2}{6-5m^2} = -\frac{1}{5} + \frac{11}{5(6-5m^2)}</math>. It's then easy to see that this expression increases with <math>m^2,</math> so we plug in <math>m^2 = \frac{5}{6}</math> to get <math>x^2+y^2 > 120,</math> giving <math>BD^2 > \boxed{480}.</math>  
 
Plugging <math>y = mx</math> into the equation for the hyperbola yields <math>x^2 = \frac{120}{6-5m^2}</math> and <math>y^2 = \frac{120m^2}{6-5m^2}.</math> By symmetry of the hyperbola, we know that <math>\left(\frac{BD}{2}\right)^2 = x^2 + y^2,</math> so we wish to find a lower bound for <math>x^2 + y^2 = 120\left(\frac{1+m^2}{6-5m^2}\right).</math> This is equivalent to minimizing <math>\frac{1+m^2}{6-5m^2} = -\frac{1}{5} + \frac{11}{5(6-5m^2)}</math>. It's then easy to see that this expression increases with <math>m^2,</math> so we plug in <math>m^2 = \frac{5}{6}</math> to get <math>x^2+y^2 > 120,</math> giving <math>BD^2 > \boxed{480}.</math>  
 +
 +
==Solution 2==
 +
 +
Assume <math>AC</math> is the asymptope of the hyperbola, <math>BD</math> in that case is the smallest. The expression of <math>BD</math> is <math>y=-\sqrt{\frac{5}{6}}x</math>. Thus, we could get <math>\frac{x^2}{20}-\frac{y^2}{24}=1\implies x^2=\frac{720}{11}</math>. The desired value is <math>4\cdot \frac{11}{6}x^2=480</math>. This case wouldn't achieve, so all <math>BD^2</math> would be greater than <math>\boxed{480}</math>
 +
 +
~Bluesoul
  
 
==See also==
 
==See also==

Revision as of 19:38, 2 February 2024

Problem

Let $A$, $B$, $C$, and $D$ be point on the hyperbola $\frac{x^2}{20}- \frac{y^2}{24} = 1$ such that $ABCD$ is a rhombus whose diagonals intersect at the origin. Find the greatest real number that is less than $BD^2$ for all such rhombi.

Solution

A quadrilateral is a rhombus if and only if its two diagonals bisect each other and are perpendicular to each other. The first condition is automatically satisfied because of the hyperbola's symmetry about the origin. To satisfy the second condition, we set $BD$ as the line $y = mx$ and $AC$ as $y = -\frac{1}{m}x.$ Because the hyperbola has asymptotes of slopes $\pm \frac{\sqrt6}{\sqrt5},$ we have $m, -\frac{1}{m} \in \left(-\frac{\sqrt6}{\sqrt5}, \frac{\sqrt6}{\sqrt5}\right).$ This gives us $m^2 \in \left(\frac{5}{6}, \frac{6}{5}\right).$


Plugging $y = mx$ into the equation for the hyperbola yields $x^2 = \frac{120}{6-5m^2}$ and $y^2 = \frac{120m^2}{6-5m^2}.$ By symmetry of the hyperbola, we know that $\left(\frac{BD}{2}\right)^2 = x^2 + y^2,$ so we wish to find a lower bound for $x^2 + y^2 = 120\left(\frac{1+m^2}{6-5m^2}\right).$ This is equivalent to minimizing $\frac{1+m^2}{6-5m^2} = -\frac{1}{5} + \frac{11}{5(6-5m^2)}$. It's then easy to see that this expression increases with $m^2,$ so we plug in $m^2 = \frac{5}{6}$ to get $x^2+y^2 > 120,$ giving $BD^2 > \boxed{480}.$

Solution 2

Assume $AC$ is the asymptope of the hyperbola, $BD$ in that case is the smallest. The expression of $BD$ is $y=-\sqrt{\frac{5}{6}}x$. Thus, we could get $\frac{x^2}{20}-\frac{y^2}{24}=1\implies x^2=\frac{720}{11}$. The desired value is $4\cdot \frac{11}{6}x^2=480$. This case wouldn't achieve, so all $BD^2$ would be greater than $\boxed{480}$

~Bluesoul

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png