Difference between revisions of "Combinatorial identity"
(→Vandermonde's Identity) |
m (→Examples) |
||
(7 intermediate revisions by 4 users not shown) | |||
Line 2: | Line 2: | ||
Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>. | Vandermonde's Identity states that <math>\sum_{k=0}^r\binom mk\binom n{r-k}=\binom{m+n}r</math>, which can be proven combinatorially by noting that any combination of <math>r</math> objects from a group of <math>m+n</math> objects must have some <math>0\le k\le r</math> objects from group <math>m</math> and the remaining from group <math>n</math>. | ||
− | Video Proof | + | ===Video Proof=== |
− | https://www.youtube.com/watch?v= | + | https://www.youtube.com/watch?v=u1fktz9U9ig |
+ | |||
+ | ~avn | ||
==Hockey-Stick Identity== | ==Hockey-Stick Identity== | ||
Line 59: | Line 61: | ||
'''Combinatorial Proof 1''' | '''Combinatorial Proof 1''' | ||
− | Imagine that we are distributing <math>n</math> indistinguishable candies to <math>k</math> distinguishable children. By a direct application of Balls and | + | Imagine that we are distributing <math>n</math> indistinguishable candies to <math>k</math> distinguishable children. By a direct application of Balls and Holes, there are <math>{n+k-1\choose k-1}</math> ways to do this. Alternatively, we can first give <math>0\le i\le n</math> candies to the oldest child so that we are essentially giving <math>n-i</math> candies to <math>k-1</math> kids and again, with Balls and Holes, <math>{n+k-1\choose k-1}=\sum_{i=0}^n{n+k-2-i\choose k-2}</math>, which simplifies to the desired result. |
'''Combinatorial Proof 2''' | '''Combinatorial Proof 2''' | ||
We can form a committee of size <math>k+1</math> from a group of <math>n+1</math> people in <math>{{n+1}\choose{k+1}}</math> ways. Now we hand out the numbers <math>1,2,3,\dots,n-k+1</math> to <math>n-k+1</math> of the <math>n+1</math> people. We can divide this into <math>n-k+1</math> disjoint cases. In general, in case <math>x</math>, <math>1\le x\le n-k+1</math>, person <math>x</math> is on the committee and persons <math>1,2,3,\dots, x-1</math> are not on the committee. This can be done in <math>\binom{n-x+1}{k}</math> ways. Now we can sum the values of these <math>n-k+1</math> disjoint cases, getting <cmath>{{n+1}\choose {k+1}} ={{n}\choose{k}}+{{n-1}\choose{k}}+{{n-2}\choose{k}}+\hdots+{{k+1}\choose{k}}+{{k}\choose{k}}.</cmath> | We can form a committee of size <math>k+1</math> from a group of <math>n+1</math> people in <math>{{n+1}\choose{k+1}}</math> ways. Now we hand out the numbers <math>1,2,3,\dots,n-k+1</math> to <math>n-k+1</math> of the <math>n+1</math> people. We can divide this into <math>n-k+1</math> disjoint cases. In general, in case <math>x</math>, <math>1\le x\le n-k+1</math>, person <math>x</math> is on the committee and persons <math>1,2,3,\dots, x-1</math> are not on the committee. This can be done in <math>\binom{n-x+1}{k}</math> ways. Now we can sum the values of these <math>n-k+1</math> disjoint cases, getting <cmath>{{n+1}\choose {k+1}} ={{n}\choose{k}}+{{n-1}\choose{k}}+{{n-2}\choose{k}}+\hdots+{{k+1}\choose{k}}+{{k}\choose{k}}.</cmath> | ||
+ | |||
+ | '''Combinatorial Proof 3''' | ||
+ | |||
+ | Think of the right hand side as picking <math>r</math> people from <math>m</math> men and <math>n</math> women. Think of the left hand side as picking <math>k</math> men from the <math>m</math> total men and picking <math>r-k</math> women from the <math>n</math> total women. The left hand side and right hand side are the same, thus Vandermonde's identity must be true. | ||
'''Algebraic Proof 2''' | '''Algebraic Proof 2''' | ||
− | Apply the finite geometric series formula to <math>(1+x)</math>: <cmath>1+(1+x)+(1+x)^2+...+(1+x)^n=\frac{(1+x)^{n+1}-1}{(1+x)-1}</cmath> Then expand with the Binomial Theorem and simplify: <cmath>1+(1+x)+(1+2x+x^2)+...+(\binom{n}{0}+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n-1}x^{n-1}+\binom{n}{n}x^n)=\binom{n+1}{1}+\binom{n+1}{2}x+...+\binom{n+1}{n+1}x^n</cmath> Finally, equate coefficients of <math>x^m</math> on both sides: <cmath>\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+...+\binom{n}{m}=\binom{n+1}{m+1}</cmath> Since for <math>i<m</math>, <math>\binom{i}{m}=0</math>, this simplifies to the hockey stick identity. | + | Apply the finite geometric series formula to <math>(1+x)</math>: <cmath>1+(1+x)+(1+x)^2+...+(1+x)^n=\frac{(1+x)^{n+1}-1}{(1+x)-1}</cmath> Then expand with the Binomial Theorem and simplify: <cmath>1+(1+x)+(1+2x+x^2)+...+ \left (\binom{n}{0}+\binom{n}{1}x+\binom{n}{2}x^2+...+\binom{n}{n-1}x^{n-1}+\binom{n}{n}x^n \right )=\binom{n+1}{1}+\binom{n+1}{2}x+...+\binom{n+1}{n+1}x^n</cmath> Finally, equate coefficients of <math>x^m</math> on both sides: <cmath>\binom{0}{m}+\binom{1}{m}+\binom{2}{m}+...+\binom{n}{m}=\binom{n+1}{m+1}</cmath> Since for <math>i<m</math>, <math>\binom{i}{m}=0</math>, this simplifies to the hockey stick identity. |
==Another Identity== | ==Another Identity== | ||
Line 88: | Line 94: | ||
* [http://artofproblemsolving.com/wiki/index.php/2015_AIME_I_Problems/Problem_12 2015 AIME I Problem 12] | * [http://artofproblemsolving.com/wiki/index.php/2015_AIME_I_Problems/Problem_12 2015 AIME I Problem 12] | ||
* [https://artofproblemsolving.com/wiki/index.php/2020_AIME_I_Problems/Problem_7 2020 AIME I Problem 7] | * [https://artofproblemsolving.com/wiki/index.php/2020_AIME_I_Problems/Problem_7 2020 AIME I Problem 7] | ||
+ | * [https://artofproblemsolving.com/wiki/index.php/2016_AMC_10A_Problems/Problem_20 2016 AMC 10A Problem 20] | ||
==See also== | ==See also== |
Latest revision as of 00:54, 17 January 2021
Contents
Vandermonde's Identity
Vandermonde's Identity states that , which can be proven combinatorially by noting that any combination of
objects from a group of
objects must have some
objects from group
and the remaining from group
.
Video Proof
https://www.youtube.com/watch?v=u1fktz9U9ig
~avn
Hockey-Stick Identity
For .
This identity is known as the hockey-stick identity because, on Pascal's triangle, when the addends represented in the summation and the sum itself is highlighted, a hockey-stick shape is revealed.
Proof
Inductive Proof
This identity can be proven by induction on .
Base Case
Let .
.
Inductive Step
Suppose, for some ,
.
Then
.
Algebraic Proof
It can also be proven algebraically with Pascal's Identity, .
Note that
, which is equivalent to the desired result.
Combinatorial Proof 1
Imagine that we are distributing indistinguishable candies to
distinguishable children. By a direct application of Balls and Holes, there are
ways to do this. Alternatively, we can first give
candies to the oldest child so that we are essentially giving
candies to
kids and again, with Balls and Holes,
, which simplifies to the desired result.
Combinatorial Proof 2
We can form a committee of size from a group of
people in
ways. Now we hand out the numbers
to
of the
people. We can divide this into
disjoint cases. In general, in case
,
, person
is on the committee and persons
are not on the committee. This can be done in
ways. Now we can sum the values of these
disjoint cases, getting
Combinatorial Proof 3
Think of the right hand side as picking people from
men and
women. Think of the left hand side as picking
men from the
total men and picking
women from the
total women. The left hand side and right hand side are the same, thus Vandermonde's identity must be true.
Algebraic Proof 2
Apply the finite geometric series formula to :
Then expand with the Binomial Theorem and simplify:
Finally, equate coefficients of
on both sides:
Since for
,
, this simplifies to the hockey stick identity.
Another Identity
Hat Proof
We have different hats. We split them into two groups, each with k hats: then we choose
hats from the first group and
hats from the second group. This may be done in
ways. Evidently, to generate all possible choices of
hats from the
hats, we must choose
hats from the first
and the remaining
hats from the second
; the sum over all such
is the number of ways of choosing
hats from
. Therefore
, as desired.
Proof 2
This is a special case of Vandermonde's identity, in which we set and
.
Examples
- 1986 AIME Problem 11
- 2000 AIME II Problem 7
- 2013 AIME II Problem 6 (Solution 2)
- 2015 AIME I Problem 12
- 2020 AIME I Problem 7
- 2016 AMC 10A Problem 20