# Difference between revisions of "Law of Cosines"

The Law of Cosines is a theorem which relates the side-lengths and angles of a triangle. For a triangle with edges of length $a$, $b$ and $c$ opposite angles of measure $A$, $B$ and $C$, respectively, the Law of Cosines states:

$c^2 = a^2 + b^2 - 2ab\cos C$

$b^2 = a^2 + c^2 - 2ac\cos B$

$a^2 = b^2 + c^2 - 2bc\cos A$

In the case that one of the angles has measure $90^\circ$ (is a right angle), the corresponding statement reduces to the Pythagorean Theorem.

## Proofs

### Acute Triangle

$[asy] pair A,B,C,D,E; C=(30,70); B=(0,0); A=(100,0); D=(30,0); size(100); draw(B--A--C--B); draw(C--D); label("A",A,(1,0)); dot(A); label("B",B,(-1,-1)); dot(B); label("C",C,(0,1)); dot(C); draw(D--(30,4)--(34,4)--(34,0)--D); label("f",(30,35),(1,0)); label("d",(15,0),(0,-1)); label("e",(50,0),(0,-1.5)); [/asy]$

Let $a$, $b$, and $c$ be the side lengths, $C$ is the angle measure opposite side $c$, $f$ is the distance from angle $C$ to side $c$, and $d$ and $e$ are the lengths that $c$ is split into by $f$.

We use the Pythagorean theorem:

$$a^2+b^2-2f^2=d^2+e^2$$

We are trying to get $a^2+b^2-2f^2+2de$ on the LHS, because then the RHS would be $c^2$.

We use the addition rule for cosines and get:

$$\cos{C}=\dfrac{f}{a}*\dfrac{f}{b}-\dfrac{d}{a}*\dfrac{e}{b}=\dfrac{f^2-de}{ab}$$

We multiply by -2ab and get:

$$2de-2f^2=-2ab\cos{C}$$

Now remember our equation?

$$a^2+b^2-2f^2+2de=c^2$$

We replace the $-2f^2+2de$ by $-2ab\cos{C}$ and get:

$$c^2=a^2+b^2-2ab\cos{C}$$

We can use the same argument on the other sides.

### Right Triangle

Since $C=90^{\circ}$, $\cos C=0$, so the expression reduces to the Pythagorean Theorem. You can find several proofs of the Pythagorean Theorem here.

### Obtuse Triangle

The argument for an obtuse triangle is the same as the proof for an acute triangle.