Difference between revisions of "Pentagon"

m (stub)
 
 
(15 intermediate revisions by 7 users not shown)
Line 1: Line 1:
A '''pentagon''' is a [[polygon]] with 5 sides.
+
In [[geometry]], a '''pentagon''' is a [[polygon]] with 5 sides. Each [[angle]] of a [[regular polygon | regular]] pentagon is <math>108^{\circ}</math>. The sum of the internal angles of any pentagon is <math>540^{\circ}</math>.
  
== See also ==
+
== Construction ==
 +
[[Image:Pentagon.png|center]]
 +
It is possible to construct a regular pentagon with compass and straightedge:
 +
 
 +
# Draw circle <math>O</math> (red).
 +
# Draw diameter <math>AB</math> and construct a perpendicular radius through <math>O</math>.
 +
# Construct the midpoint of <math>CO</math>, and label it <math>E</math>.
 +
# Draw <math>AE</math> (green).
 +
# Construct the angle bisector of <math>\angle AEO</math>, and label its intersection with <math>AB</math> as <math>F</math> (pink).
 +
# Construct a perpendicular to <math>AB</math> at <math>F</math>.
 +
# Adjust your compass to length <math>AG</math>, and mark off points <math>H</math>, <math>I</math> and <math>J</math> on circle <math>O</math>.
 +
# <math>AGHIJ</math> is a regular pentagon.
 +
 
 +
==The Golden Ratio and the Pentagram==
 +
The pentagon is closely associated with the [[Golden Ratio]]. More specifically, the ratio of a diagonal to an edge is <math>\frac{1+\sqrt{5}}{2}</math>. By drawing each of the diagonals, one can form a pentagram, or five-pointed star, in which each of the internal angles is <math>36^{\circ}</math>.\\
 +
 
 +
== See Also ==
 
*[[Polygon]]
 
*[[Polygon]]
  
 
{{stub}}
 
{{stub}}
 +
 +
[[Category:Definition]]
 +
[[Category:Geometry]]

Latest revision as of 19:39, 20 July 2016

In geometry, a pentagon is a polygon with 5 sides. Each angle of a regular pentagon is $108^{\circ}$. The sum of the internal angles of any pentagon is $540^{\circ}$.

Construction

Pentagon.png

It is possible to construct a regular pentagon with compass and straightedge:

  1. Draw circle $O$ (red).
  2. Draw diameter $AB$ and construct a perpendicular radius through $O$.
  3. Construct the midpoint of $CO$, and label it $E$.
  4. Draw $AE$ (green).
  5. Construct the angle bisector of $\angle AEO$, and label its intersection with $AB$ as $F$ (pink).
  6. Construct a perpendicular to $AB$ at $F$.
  7. Adjust your compass to length $AG$, and mark off points $H$, $I$ and $J$ on circle $O$.
  8. $AGHIJ$ is a regular pentagon.

The Golden Ratio and the Pentagram

The pentagon is closely associated with the Golden Ratio. More specifically, the ratio of a diagonal to an edge is $\frac{1+\sqrt{5}}{2}$. By drawing each of the diagonals, one can form a pentagram, or five-pointed star, in which each of the internal angles is $36^{\circ}$.\\

See Also

This article is a stub. Help us out by expanding it.

Invalid username
Login to AoPS