# Search results

• ...that each entry is between $2$ and $9$ inclusive and no two consecutive entries are equal?'' ...luding $2$ and $9$; the key restriction here is that no two boxes right next to each other can have the same number.
13 KB (2,099 words) - 19:30, 14 May 2022
• ...me ${t}$ is $e^{t^2}$ meters/second. (Yes, probably no object really moves this way, but just pretend.) ''Approximately'' how far <cmath>L(f, P) \le g(b) - g(a) \le U (f, P)</cmath>
11 KB (2,082 words) - 15:23, 2 January 2022
• ...ular in the months leading up to the actual [[AMC]] competition. There is no guarantee that community members will make Mock AMCs in any given year, but ! scope="row" | '''Mock AMC U'''
59 KB (7,185 words) - 17:56, 2 July 2022
• ...at-granddaughters. How many of Bertha's daughters and grand-daughters have no children? Let $U=2\cdot 2004^{2005}$, $V=2004^{2005}$, $W=2003\cdot 20 13 KB (1,953 words) - 22:24, 22 November 2021 • # There are no right angle turns in the particle's path. ...mber of diagonals. Let [itex]R$ represent a move to the right, $U$ represent a move upwards, and $D$ to be a move that is di
5 KB (856 words) - 20:23, 25 February 2020
• Find the least positive integer $n$ such that no matter how $10^{n}$ is expressed as the product of any two posit ...s. The area of pentagon $ABCDE$ is $451$. Find $u + v$.
7 KB (1,208 words) - 19:16, 2 January 2022
• ...ath>3[/itex]. By considering the graph of $y=f(x)$, which is a "U-shaped" parabola, it is now evident that $f(-3) > 0$ and $f === Solution 7 (No Trig) === 19 KB (3,221 words) - 02:42, 3 April 2022 • ...ion, how many such after-lunch typing orders are possible? (That there are no letters left to be typed is one of the possibilities.) [itex]\textbf{Case 1:}$ Since letter 9 arrived before lunch, no further letters will arrive, and the number of possible orders is simply th
5 KB (804 words) - 01:27, 15 May 2021
• ...ath>c_{i}[/itex] is some coefficient. However, since $F(x)$ has no $x$ term, it must be true that $c_{15} = 1$. ...>g(x)[/itex] are also roots of $f(x)$. Let these roots be $u,v$. We get the system
8 KB (1,350 words) - 14:13, 17 September 2021
• ...which $A$ cannot win in a finite number of moves, or prove that no such minimum value exists. ...erline{CA}[/itex] and $\overline{AB}$, respectively. Let $U,V$ be the intersections of line $EF$ with line $MN</m 3 KB (585 words) - 11:12, 16 March 2016 • *Ulysses starts with the third picket and paints every [itex]u$ th picket. ...itive integer $100h+10t+u$ paintable when the triple $(h,t,u)$ of positive integers results in every picket being painted exactly
4 KB (750 words) - 21:09, 23 December 2021
• Specifically, let $u, v : \mathbb{R \times R \to R}$ be definted <cmath> u(x,y) = \text{Re}\,f(x+iy), \qquad v(x,y) = \text{Im}\,f(x+iy) . </cmath>
9 KB (1,537 words) - 21:04, 26 July 2017
• ...se variables, which does uniquely determine these variables - but there is no obvious way of computing them. We will show a different solution. ...th>d_2[/itex] one can always uniquely determine the coefficients $s,t,u$.
3 KB (568 words) - 15:50, 3 April 2012
• ...ath>f(x)=x^2+x,[/itex] prove that the equation $4f(a)=f(b)$ has no solutions in positive integers $a$ and $b.$ Let $0<u<1$ and define
3 KB (560 words) - 19:23, 10 March 2015
• \text{(L) There is no such value of } r\qquad[/itex] \text{(U) }\frac{-2007}{2^{14}}\qquad[/itex]
33 KB (5,143 words) - 20:49, 28 December 2021
• Case 1: $196u \Longrightarrow u = 9$. Easy to directly disprove. ...S(n)) = 8+u[/itex] if $u \le 2$ and $S(S(n)) = 2 + (u-3) = u-1$ otherwise.
15 KB (2,554 words) - 14:41, 13 August 2021
• ...h>u = \sqrt{x^2+1}[/itex]. Since $x > 0$, it follows that $u > 1$. We now have: <cmath>W_1 = (u + 1)^3</cmath>
7 KB (1,214 words) - 18:49, 29 January 2018
• ...simple, loopless'' graphs: there is at most one edge joining two vertices, no edge may join a vertex to itself, and the edges are not directed. For grap ...$v$ is ''isolated'' if $d(v) = 0$, i.e. if there are no edges incident to $v$.
8 KB (1,428 words) - 10:26, 27 August 2020
• ...[/itex] be an equilateral triangle with sides of length three units. $U$, $V$, $W$, $X$, $Y$, and label("$U$",(-1/6,sqrt(3)/3),NW);
15 KB (2,057 words) - 19:13, 10 March 2015
• Let $\, k_1 < k_2 < k_3 < \cdots \,$ be positive integers, no two consecutive, and let $\, s_m = k_1 + k_2 + \cdots + k_m \,$ ...e of the three given colors (red, blue, yellow), under the constraint that no two adjacent sides may be the same color. By making a sequence of such modi
2 KB (391 words) - 07:58, 19 July 2016

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)