Miquel triangle and Isogonal center

by TelvCohl, Feb 3, 2018, 1:14 PM

Main result

In this section, I'll give a brief introduction to Miquel triangle, Isogonal center and Gergonne-Steiner point of a quadrangle. All symbols in this section bear the same meaning.

Notation

Given a quadrangle $ P_1P_2P_3P_4. $ Let $ M_X, M_Y, M_Z $ be the Miquel point of the complete quadrilateral $ \{ P_1P_2, P_1P_3, P_2P_4, P_3P_4 \}, $ $ \{ P_1P_2, P_2P_3, P_1P_4, P_3P_4 \}, $ $ \{ P_1P_3, P_2P_3, P_1P_4, P_2P_4 \}, $ respectively and let $ X, Y, Z $ be the intersection of $ 
\{ P_1P_4, P_2P_3 \}, $ $ \{ P_1P_3, P_2P_4 \}, $ $ \{ P_1P_2, P_3P_4 \}, $ respectively. Consider the transformation $ \Psi_X $ defined by inversion with center $ M_X, $ power $ M_XM_Y \cdot M_XM_Z $ followed by reflection in the angle bisector of $ \angle M_YM_XM_Z. $ For two points $ J,K, $ we say $ \{ J,K \} \in \mathbb{X} $ if $ J, K $ is the image of $ K, J $ under $ \Psi_X. $ Similarly, we can define $ \Psi_Y,\Psi_Z, \mathbb{Y}, \mathbb{Z}. $ Note that $ \{ J,K \} \in \mathbb{X} $ $ \Longleftrightarrow $ $ \triangle M_XM_YJ \stackrel{+}{\sim} \triangle M_XKM_Z. $

Property 1 : $ \{ P_1, P_4 \}, \{ P_2, P_3 \}, \{ Y,Z \} \in \mathbb{X}, $ $ \{ P_1, P_3 \}, \{ P_2, P_4 \}, \{ X,Z \} \in \mathbb{Y}, $ $ \{ P_1, P_2 \}, \{ P_3, P_4 \}, \{ X,Y \} \in \mathbb{Z}. $

Proof : Since $ M_X $ is the Miquel point of the complete quadrilateral $ \{ P_1P_2, P_1P_3, P_2P_4, P_3P_4 \}, $ so we get $ M_XP_1 \cdot M_XP_4 = M_XP_2 \cdot M_XP_3 = M_XY \cdot M_XZ = \varsigma $ and $ \{ M_XP_1, M_XP_4 \}, \{ M_XP_2, M_XP_3 \} $ are isogonal conjugate WRT $ \angle YM_XZ. $ Consider the transformation $ \Phi_X $ define by inversion with center $ M_X, $ power $ \varsigma $ followed by reflection in the angle bisector of $ \angle YM_XZ, $ then $ \odot (P_2P_3Z) \mapsto \odot (P_2P_3Y)  \odot (P_1P_4Z) \mapsto \odot (P_1P_4Y) $ under $ \Phi_X, $ so we conclude that $ M_Z $ is the image of $ M_Y $ under $ \Phi_X $ $ \Longrightarrow $ $ \Phi_X = \Psi_X. $ i.e. $ \{ P_1, P_4 \}, \{ P_2, P_3 \}, \{ Y,Z \} \in \mathbb{X}. $ $ \qquad \blacksquare $

Property 2 : The isogonal conjugate $ T_i $ of $ P_i $ WRT $ \triangle M_XM_YM_Z $ is the isogonal conjugate of the complement of $ P_i $ WRT $ \triangle P_jP_kP_l $ WRT $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4\}. $

Proof : It suffices to prove the case when $ i=4. $ Let $ M_{ij} $ be the midpoint of $ P_iP_j $ where $ i, j \in \{ 1,2,3,4\} $ and let $ P^*_4 $ be the reflection of $ P_4 $ in $ M_{23}. $ From $ \triangle M_XP_1P_2 \stackrel{+}{\sim} \triangle M_XP_3P_4 $ we get $ \frac{P_2P_4^*}{M_XP_3} = \frac{P_3P_4}{M_XP_3} = \frac{P_1P_2}{M_XP_1} $ and $ \measuredangle (P_1P_2, P_2P_4^*) = \measuredangle (P_1P_2, P_3P_4) = \measuredangle (M_XP_1, M_XP_3), $ so $ \triangle P_1P_2P_4^* \stackrel{+}{\sim} \triangle P_1M_XP_3 $ $ \Longrightarrow $ $ \{ P_1M_X, P_1P_4^* \} $ are isogonal conjugate WRT $ \angle P_1. $ i.e. $ P_1M_X $ passes through the isogonal conjugate of the complement of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ WRT $ \triangle P_1P_2P_3. $ Similarly, $ P_2M_Y, P_3M_Z $ pass through the isogonal conjugate of the complement of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ WRT $ \triangle P_1P_2P_3. $ On the other hand, from Property 1 we know $ \{ P_1, P_4 \} \in \mathbb{X}, $ so $ T_4 $ lies on $ P_1M_X. $ Similarly, $ T_4 $ lies on $ P_2M_Y, $ $ P_3M_Z, $ so we conclude that $ T_4 $ is the isogonal conjugate of the complement of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ WRT $ \triangle P_1P_2P_3. $ $ \qquad \blacksquare $

Property 3 : $ \{ T_1,T_4 \}, \{ T_2, T_3 \} \in \mathbb{X}, \{ T_1, T_3 \}, \{ T_2,T_4 \} \in \mathbb{Y}, \{ T_1, T_2 \}, \{ T_3,T_4 \} \in \mathbb{Z} $ and $ P_1T_1 \parallel P_2T_2 \parallel P_3T_3 \parallel P_4T_4. $

Proof : From Property 1 we know $ \{ P_1, P_4 \} \in \mathbb{X}, $ so $ \triangle M_XM_YP_1 \stackrel{+}{\sim} \triangle M_XP_4M_Z $ $ \Longrightarrow $ $ \measuredangle T_4P_1M_Y = \measuredangle M_XM_ZP_4 = \measuredangle T_4M_ZM_Y, $ so $ T_4 \in \odot (P_1M_YM_Z). $ Similarly, we can prove $ T_1, T_2, T_3 $ is the second intersection of $ P_4M_X, P_4M_Y, P_4M_Z $ with $ \odot (P_4M_YM_Z), $ $ \odot (P_4M_ZM_X), $ $ \odot (P_4M_XM_Y), $ respectively, so $ \triangle M_XM_ZT_2 \stackrel{+}{\sim} \triangle M_XT_3M_Y $ and $ \{ T_1,T_4 \}, \{ T_2, T_3 \} \in \mathbb{X}. $ From $ \{ P_1,P_4 \}, \{ T_1, T_4 \} \in \mathbb{X} $ $ \Longrightarrow $ $ \frac{M_XP_1}{M_XT_4} = \frac{M_XT_1}{M_XP_4}, $ so $ P_1T_1 $ and $ P_4T_4 $ are parallel. Analogously, we can prove $ \{ T_1, T_3 \}, \{ T_2,T_4 \} \in \mathbb{Y}, \{ T_1, T_2 \}, \{ T_3,T_4 \} \in \mathbb{Z} $ and $ P_2T_2 \parallel P_4T_4, $ $ P_3T_3 \parallel P_4T_4, $ so we conclude that $ P_1T_1 \parallel P_2T_2 \parallel P_3T_3 \parallel P_4T_4. $ $ \qquad \blacksquare $

Property 4 : $ \odot (P_1P_4M_X), \odot (P_2P_3M_X), \odot (P_1P_3M_Y), \odot (P_2P_4M_Y), \odot (P_1P_2M_Z), \odot (P_3P_4M_Z) $ are concurrent at $ I $ and $ \{ I,X \} \in \mathbb{X}, $ $ \{ I,Y \} \in \mathbb{Y}, $ $ \{ I,Z \} \in \mathbb{Z}. $

Proof : Let $ I $ be the second intersection of $ \odot (P_1P_2M_Z), \odot (P_1P_3M_Y). $ Notice $ \odot (P_1P_2M_Z), \odot (P_1P_3M_Y) $ is the image of $ \odot (P_3P_4M_Y), \odot (P_2P_4M_Z) $ under $ \Psi_X, $ respectively, so $ \{ I,X \} \in \mathbb{X}. $ Combining $ \{ P_2, P_3 \} \in \mathbb{X} $ we get $ \triangle M_XP_2I \stackrel{+}{\sim} \triangle M_XXP_3 $ $ \Longrightarrow $ $ \measuredangle P_2IM_X = \measuredangle P_2P_3M_X $ $ \Longrightarrow $ $ I \in \odot (P_2P_3M_X). $ Similarly, by $ \{ P_1, P_4 \} \in \mathbb{X} $ we get $ \triangle M_XP_1I \stackrel{+}{\sim} \triangle M_XXP_4, $ so $ \measuredangle P_1IM_X = \measuredangle P_1P_4M_X $ and $ I \in \odot (P_1P_4M_X). $ Analogously, we can prove $ I $ lies on $ \odot (P_2P_4M_Y), $ $ \odot (P_3P_4M_Z), $ so we conclude that $ \odot (P_1P_4M_X), \odot (P_2P_3M_X), \odot (P_1P_3M_Y), \odot (P_2P_4M_Y), \odot (P_1P_2M_Z), \odot (P_3P_4M_Z) $ are concurrent at $ I $ and $ \{ I,X \} \in \mathbb{X}.$ $ \qquad \blacksquare $

Corollary 5 : $ IP_i $ is the common tangent of $\odot (P_iM_XX), \odot (P_iM_YY), \odot (P_iM_ZZ) $ where $ i \in \{ 1,2,3,4 \}. $

Proof : It suffices to prove the case when $ i=4. $ From $ I \in \odot (P_1P_4M_X) $ and $ \triangle M_XP_1I \stackrel{+}{\sim} \triangle M_XXP_4 $ $ \Longrightarrow $ $ \measuredangle IP_4M_X = \measuredangle IP_1M_X = \measuredangle P_4XM_X, $ so $ IP_4 $ is tangent to $ \odot (P_4M_XX). $ Similarly, we can prove $ IP_4 $ is tangent to $ \odot (P_4M_YY), \odot (P_4M_ZZ), $ so $ IP_4 $ is the common tangent of $\odot (P_4M_XX), \odot (P_4M_YY), \odot (P_4M_ZZ). $ $ \qquad \blacksquare $

Corollary 6 : $ M_XX, M_YY, M_ZZ $ are concurrent at $ G. $

Proof : From $ \{ I,X \} \in \mathbb{X} $ $ \Longrightarrow $ $ \{ M_XI, M_XX \} $ are isogonal conjugate WRT $ \angle M_YM_XM_Z, $ so the isogonal conjugate $ G $ of $ I $ WRT $ \triangle M_XM_YM_Z $ lies on $ M_XX. $ Similarly, we can prove $ G \in M_YY, $ $ G \in M_ZZ. $ $ \qquad \blacksquare $

Remark : $ G $ is called the Gergonne-Steiner point and $ I $ is called the Isogonal center of the quadrangle $ P_1P_2P_3P_4. $

Property 7 : $ G $ lies on $ \odot (XM_YM_Z), \odot (YM_ZM_X), \odot (ZM_XM_Y). $

Proof : From the proof of Property 3 $ \Longrightarrow $ $ T_4 $ lies on $ \odot (P_2M_ZM_X), $ $ \odot (P_3M_XM_Y), $ so $ \measuredangle M_YM_XM_Z = \measuredangle M_YM_XT_4 + \measuredangle T_4M_XM_Z = \measuredangle M_YP_3T_4 + \measuredangle T_4P_2M_Z. $ On the other hand, since $ I $ lies on $ \odot (P_1P_2M_Z) $ and $ \odot (P_1P_3M_Y), $ so $ \measuredangle M_ZIM_Y = \measuredangle M_ZIP_1 + \measuredangle P_1IM_Y = \measuredangle M_ZP_2P_1 + \measuredangle P_1P_3M_Y, $ hence keep in mind that $ G,I $ are isogonal conjugate WRT $ \triangle M_XM_YM_Z $ we conclude that $$ \measuredangle M_YGM_Z = \measuredangle M_YM_XM_Z + \measuredangle M_ZIM_Y = \measuredangle M_YP_3T_4 + \measuredangle T_4P_2M_Z + \measuredangle M_ZP_2P_1 + \measuredangle P_1P_3M_Y = \measuredangle P_1P_3M_Z + \measuredangle M_YP_2P_1 = \measuredangle P_1XM_Z + \measuredangle M_YXP_1 = \measuredangle M_YXM_Z. $$i.e. $ G $ lies on $ \odot (XM_YM_Z). $ $ \qquad \blacksquare $

Property 8 : $ G $ is the complement of the antigonal conjugate of $ P_i $ WRT $ \triangle P_jP_kP_l $ WRT $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4\}. $

Proof : It suffices to prove the case when $ i=4. $ Since $ M_Y $ is the center of the spiral similarity of $ \overline{P_1P_4M_{14}} \mapsto \overline{P_2P_3M_{23}}, $ so $ \measuredangle M_{14}M_YM_{23} = \measuredangle P_1M_YP_2 = \measuredangle M_{14}XM_{23} $ $ \Longrightarrow $ $ M_Y $ lies on $ \odot (XM_{14}M_{23}). $ Analogously, we can prove $ M_Z \in \odot (XM_{14}M_{23}), $ so $ M_{14} $ and $ M_{23} $ lie on $ \odot (XM_YM_Z). $ Similarly, we can prove $ M_{13}, M_{24} \in \odot (YM_ZM_X), $ $ M_{12}, M_{34} \in \odot (ZM_XM_Y), $ so $$ \measuredangle M_{12}GM_{13} = \measuredangle M_{12}GM_X + \measuredangle M_XGM_{13} = \measuredangle M_{12}M_{34}M_X + \measuredangle M_XM_{24}M_{13} = \measuredangle P_2P_4M_X + \measuredangle M_XP_4P_3 = \measuredangle P_2P_4P_3, $$hence the anticomplement $ G^*_4 $ of $ G $ WRT $ \triangle P_1P_2P_3 $ lies on the reflection of $ \odot (P_2P_3P_4) $ in $ P_2P_3. $ Analogously, we can prove $ G^*_4 $ lies on the reflection $ \odot (P_1P_3P_4), \odot (P_1P_2P_4) $ in $ P_1P_3, $ $ P_1P_2, $ respectively, so we conclude that $ G^*_4 $ is the antigonal conjugate of $ P_4 $ WRT $ \triangle P_1P_2P_3. $ i.e. $ G $ is the complement of the antigonal conjugate of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ WRT $ \triangle P_1P_2P_3. $ $ \qquad \blacksquare $

Corollary 9 : $ G $ lies on $ \odot (M_{12}M_{13}M_{14}), \odot (M_{12}M_{23}M_{24}), \odot (M_{13}M_{23}M_{34}), \odot (M_{14}M_{24}M_{34}). $

Property 10 : Let $ S_i $ be the Miquel associate of $ P_i $ WRT $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4\}, $ then $ I $ lies on $ \odot (P_2S_1Z), $ $ \odot (P_3S_1Y), $ $ \odot (P_4S_1X), $ $ \odot (P_1S_2Z), $ $ \odot (P_3S_2X), $ $ \odot (P_4S_2Y), $ $ \odot (P_1S_3Y), $ $ \odot (P_2S_3X), $ $ \odot (P_4S_3Z), $ $ \odot (P_1S_4X), $ $ \odot (P_2S_4Y), $ $ \odot (P_3S_4Z). $

Proof : It suffices to prove $ I $ lies on $ \odot (P_1S_4X). $ Consider an inversion with center $ I $ and denote the image of $ \Box $ as $ {\Box}^{\mathbb{I}}, $ then by Property 4 $ \Longrightarrow $ $ \triangle M_X^{\mathbb{I}}M_Y^{\mathbb{I}}M_Z^{\mathbb{I}} $ is the diagonal triangle of the quadrangle $ P_1^{\mathbb{I}}P_2^{\mathbb{I}}P_3^{\mathbb{I}}P_4^{\mathbb{I}}. $ Since $ X^{\mathbb{I}} $ lies on $ \odot (P_2^{\mathbb{I}}P_4^{\mathbb{I}}M_Z^{\mathbb{I}}), $ $ \odot (P_3^{\mathbb{I}}P_4^{\mathbb{I}}M_Y^{\mathbb{I}}), $ so $ X^{\mathbb{I}} $ is the Miquel point of the complete quadrilateral $ \{ P_1^{\mathbb{I}}P_2^{\mathbb{I}}, P_1^{\mathbb{I}}P_3^{\mathbb{I}}, P_2^{\mathbb{I}}P_4^{\mathbb{I}}, P_3^{\mathbb{I}}P_4^{\mathbb{I}} \}. $ Analogously, $ Y^{\mathbb{I}}, Z^{\mathbb{I}} $ is the Miquel point of the complete quadrilateral $ \{ P_1^{\mathbb{I}}P_2^{\mathbb{I}}, P_2^{\mathbb{I}}P_3^{\mathbb{I}}, P_1^{\mathbb{I}}P_4^{\mathbb{I}}, P_3^{\mathbb{I}}P_4^{\mathbb{I}} \}, $ $ \{ P_1^{\mathbb{I}}P_3^{\mathbb{I}}, P_2^{\mathbb{I}}P_3^{\mathbb{I}}, P_1^{\mathbb{I}}P_4^{\mathbb{I}}, P_2^{\mathbb{I}}P_4^{\mathbb{I}} \}, $ respectively. Since $ S_4^{\mathbb{I}} $ lies on $ \odot (P_1^{\mathbb{I}}Y^{\mathbb{I}}Z^{\mathbb{I}}), $ $ \odot (P_2^{\mathbb{I}}Z^{\mathbb{I}}X^{\mathbb{I}}), $ $ \odot (P_3^{\mathbb{I}}X^{\mathbb{I}}Y^{\mathbb{I}}), $ so $ S_4^{\mathbb{I}} \in P_1^{\mathbb{I}}X^{\mathbb{I}}, $ by the proof of Property 3, hence we conclude that $ I $ lies on $ \odot (P_1S_4X). $ $ \qquad \blacksquare $

Property 11 : $ I $ is the image of the isogonal conjugate of $ P_i $ WRT $ \triangle P_jP_kP_l $ under the inversion WRT $ \odot (P_jP_kP_l) $ where $ \{ i,j,k,l \} = \{ 1,2,3,4\}. $

Proof : It suffices to prove the case when $ i=4. $ Let $ I^* $ be the image of the isogonal conjugate of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ under the inversion WRT $ \odot (P_1P_2P_3). $ Since $ I $ lies on $ \odot (P_2P_3M_X), $ so $$ \measuredangle P_2IP_3 = \measuredangle P_2M_XP_3 = \measuredangle P_2M_XP_4 + \measuredangle P_4M_XP_3 = \measuredangle P_2ZP_3 + \measuredangle P_2YP_3 = \measuredangle P_2P_1P_3 + \measuredangle P_2P_4P_3 = \measuredangle P_2I^*P_3. $$Similarly, we can prove $ \measuredangle P_3IP_1 = \measuredangle P_3I^*P_1, $ $ \measuredangle P_1IP_2 = \measuredangle P_1I^*P_2, $ so we conclude that $ I \equiv I^*. $ i.e. $ I $ is the image of the isogonal conjugate of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ under the inversion WRT $ \odot (P_1P_2P_3). $ $ \qquad \blacksquare $

Property 12 : $ S_i $ is the cevian quotient $ (P_i / T_i) $ of $ P_i, T_i $ WRT $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4\}. $

Proof : It suffices to prove the case when $ i=4. $ Let $ \widehat{P}_4 $ be the isotomic conjugate of $ P_4 $ WRT $ \triangle P_1P_2P_3, $ $ \triangle \widehat{X}_4\widehat{Y}_4\widehat{Z}_4 $ be the cevian triangle of $ \widehat{P}_4 $ WRT $ \triangle P_1P_2P_3, $ and $ R_1, R_2, R_3 $ be the second intersection of $ \odot (P_1P_2P_3) $ with $ \odot (P_1YZ), $ $ \odot (P_2ZX), $ $ \odot (P_3XY), $ respectively. Since $ R_1 $ is the center of the spiral similarity of $ P_2Z \mapsto P_3Y, $ so we get $ \frac{R_1P_2}{R_1P_3} = \frac{P_2Z}{P_3Y} = \frac{P_1\widehat{Z}_4}{P_1\widehat{Y}_4} $ $ \Longrightarrow $ $ \triangle R_1P_2P_3 \stackrel{+}{\sim} \triangle P_1\widehat{Z}_4\widehat{Y}_4, $ hence $ P_1R_1 $ is tangent to $ \odot (P_1\widehat{Y}_4\widehat{Z}_4) $ at $ P_1. $ Similarly, we can prove $ P_2R_2, P_3R_3 $ is tangent to $ \odot (P_2\widehat{Z}_4\widehat{X}_4), \odot (P_3\widehat{X}_4\widehat{Y}_4) $ at $ P_2, $ $ P_3, $ respectively. Let $ \triangle T_4^1T_4^2T_4^3 $ be the triangle formed by $ P_1R_1, P_2R_2, P_3R_3 $ and $ V_4^1, V_4^2, V_4^3 $ be the isogonal conjugate of $ T_4^1, T_4^2, T_4^3 $ WRT $ \triangle P_1P_2P_3, $ respectively. Note that $ \triangle \widehat{X}_4\widehat{Y}_4\widehat{Z}_4 $ and $ \triangle V_4^1V_4^2V_4^3 $ are homothetic, so $ \triangle V_4^1V_4^2V_4^3 $ is the anticevian triangle of the isotomcomplement of $ \widehat{P}_4 $ WRT $ \triangle P_1P_2P_3 $ WRT $ \triangle P_1P_2P_3, $ hence by Property 2 we conclude that $ \triangle T_4^1T_4^2T_4^3 $ is the anticevian triangle of $ T_4 $ WRT $ \triangle P_1P_2P_3 $ $ \Longrightarrow $ $ S_4, $ the perspector of $ \triangle XYZ $ and $ \triangle T_4^1T_4^2T_4^3, $ is the cevian quotient $ (P_4 / T_4 ) $ of $ P_4, T_4 $ WRT $ \triangle P_1P_2P_3. $ $ \qquad \blacksquare $

Property 13 : $ I $ lies on $ S_iT_i $ where $ i \in \{ 1,2,3,4 \}. $

Proof : It suffices to prove the case when $ i=4. $ Let $ \triangle Q_1Q_2Q_3 $ be the circumcevian triangle of $ T_4 $ WRT $ \triangle P_1P_2P_3, $ then $ P_4^1Q_1 \cdot P_4^1P_1 = P_4^1X \cdot P_4^1S_4, $ so $ Q_1 $ lies on $ \odot (P_1S_4X). $ Similarly, we can prove $ Q_2 \in \odot (P_2S_4Y), $ $ Q_3 \in \odot (P_3S_4Z), $ so from $ P_1T_4 \cdot Q_1T_4 = P_2T_4 \cdot Q_2T_4 =P_3T_4 \cdot Q_3T_4 $ we conclude that $ T_4 $ lies on the radical axis of $ \odot (P_1S_4X), \odot (P_2S_4Y), \odot (P_3S_4Z). $ i.e. $ I $ lies on $ S_4T_4. $ $ \qquad \blacksquare $

Property 14 : $ T_1 $ lies on $ XS_4, YS_3, ZS_2. $ $ T_2 $ lies on $ XS_3, YS_4, ZS_1. $ $ T_3 $ lies on $ XS_2, YS_1, ZS_4. $ $ T_4 $ lies on $ XS_1, YS_2, ZS_3. $

Proof : It suffices to prove $ T_4 $ lies on $ XS_1. $ Since $ \odot (IP_2Z), \odot (IP_3Y) $ is the image of $ \odot (P_3XY), \odot (P_2ZX) $ under $ \Psi_X, $ respectively, so $ \{ S_1, S_4 \} \in \mathbb{X}. $ Combining Property 13 we get $ M_X, S_4, T_4, X $ are concyclic. Similarly, we can prove $ M_X, S_1, T_1, X $ are concyclic, so note that $ \{ T_1, T_4 \} \in \mathbb{X}, $ by Property 3, we conclude that $ \measuredangle M_XXT_4 = \measuredangle M_XS_4T_4 = \measuredangle M_XT_1S_1 = \measuredangle M_XXS_1 $ $ \Longrightarrow $ $ T_4\in XS_1. $ $ \qquad \blacksquare $

Application

Problem 1 (Generalization of Musselman's theorem) : Given a $ \triangle ABC $ with isogonal conjugate $ P,Q. $ Let $ D, E, F $ be the second intersection of $ AQ, BQ, CQ $ with $ \odot (BQC), $ $ \odot (CQA), $ $ \odot (AQB), $ respectively. Then the circles $ \odot (APD), \odot (BPE), \odot (CPF) $ are coaxial.

Proof : Simple angle chasing yields $ \triangle ABF \stackrel{+}{\sim} \triangle AEC, $ $ \triangle ABD \stackrel{+}{\sim} \triangle APC, $ so we get $ \frac{AE}{AP} = \frac{AD}{AF} $ and $ \measuredangle PAE = \measuredangle FAD $ $ \Longrightarrow $ $ \triangle AEP \stackrel{+}{\sim} \triangle ADF, $ hence $ A $ is the center of the spiral similarity of $ EP \mapsto DF $ $ \Longrightarrow $ $ A $ is the Miquel point of the complete quadrilateral $ \{ DE, DF, PE, PF\}. $ Similarly, we can prove $ B,C $ is the Miquel point of the complete quadrilateral $ \{ EF, ED, PF, PD\}, $ $ \{ FD, FE, PD, PE\}, $ respectively, so by Property 4 we conclude that $ \odot (APD), \odot (BPE), \odot (CPF) $ are coaxial. $ \qquad \blacksquare $

Remark : Musselman's theorem is the case when $ P, Q $ is the circumcenter, orthocenter of $ \triangle ABC, $ respectively.

Problem 2 (2012 IMO shortlist G8) : Let $ \triangle ABC $ be a triangle with circumcircle $ \omega $ and $ \ell $ be a line without common points with $ \omega. $ Denote by $ P $ the foot of the perpendicular from the center of $ \omega $ to $ \ell. $ The side-lines $ BC, CA, AB $ intersect $ \ell $ at the points $ X, Y, Z $ different from $ P. $ Prove that $ \odot (APX), \odot (BPY), \odot (CPZ) $ have a common point different from $ P $ or are mutually tangent at $ P. $

Proof :

Lemma : Given a $ \triangle ABC $ with isogonal conjugate $ P,Q. $ Let $ \triangle DEF $ be the cevian triangle of $ P $ WRT $ \triangle ABC $ and $ X\in BC $ be the point s.t. $ AX $ is tangent to $ \odot (AEF) $ at $ A. $ Then $ X $ lies on the polar of $ Q $ WRT $ \odot (ABC). $

Proof : Let $ BP, CP $ cuts $ \odot (AEF) $ again at $ P_B, P_C, $ respectively and $ \triangle Q_aQ_bQ_c $ be the circumcevian triangle of $ Q $ WRT $ \triangle ABC. $ From Pascal's theorem for $ EP_BP_CFAA $ we get $ BC, P_BP_C $ and the tangent of $ \odot (AEF) $ at $ A $ are concurrent, so $ X $ lies on $ P_BP_C. $ Since $ \measuredangle BAQ_b = \measuredangle BEC = \measuredangle P_BAX, $ so combining $ \measuredangle ABQ_b = \measuredangle P_BBX $ we get $ Q_b $ is the isogonal conjugate of $ P_B $ WRT $ \triangle AXB $ $ \Longrightarrow $ $ XQ_b $ is the isogonal conjugate of $ P_BP_C $ WRT $ \angle AXD. $ Similarly, we can prove $ XQ_c $ is the isogonal conjugate of $ P_BP_C $ WRT $ \angle AXD, $ so we conclude that $ X \in Q_bQ_c $ $ \Longrightarrow $ $ X $ lies on the polar of $ Q $ WRT $ \odot (ABC). $ $ \qquad \square $

Back to the main proof :

Let $ R $ be the isogonal conjugate of the image of $ P $ under the inversion WRT $ \omega $ WRT $ \triangle ABC $ and $ T $ be the Miquel associate of $ R $ WRT $ \triangle ABC, $ it suffices to prove $ T $ lies on $ \odot (APX), \odot (BPY), \odot (CPZ). $ Let $ \triangle DEF $ be the cevian triangle of $ R $ WRT $ \triangle ABC, $ then by Lemma $ \Longrightarrow $ $ X $ lies on the tangent of $ \odot (AEF) $ at $ A, $ so $ \measuredangle TDX = \measuredangle TFA = \measuredangle TAX $ $ \Longrightarrow $ $ A, D, T, X $ are concyclic. Note that $ P $ is the Isogonal center of the quadrangle $ ABCR, $ so by Property 10 we conclude that $ A, D, P, T, X $ are concyclic. i.e. $ T \in \odot (APX). $ $ \qquad \blacksquare $

Remark : The condition $ \ell \cap \omega = \varnothing $ is redundant.

Problem 3 : Given a $ \triangle ABC $ with isogonal conjugate $ P,Q. $ Let $ \triangle DEF $ be the antipedal triangle of $ P $ WRT $ \triangle ABC $ and $ R, S $ be the image of $ Q, P $ under the inversion WRT $ \odot (ABC), $ $ \odot (DEF), $ respectively. Then $ P, R, S $ are collinear and $ R $ is the midpoint of $ PS. $

Proof : Let $ \triangle XYZ $ be the cevian triangle of $ P $ WRT $ \triangle ABC $ and $ U, V, W $ be the Miquel point of the complete quadrilateral $ \{ AB, AC, PB, PC\}, $ $ \{ BC, BA, PC, PA\}, $ $ \{ CA, CB, PA, PB\}, $ respectively. Consider an inversion with center $ P $ and denote the image of $ \Box $ as $ {\Box}^*, $ then $ X^*, Y^*, Z^* $ is the second intersection of $ A^*P^*, B^*P^*, C^*P^* $ with $ \odot (B^*PC^*), $ $ \odot (C^*PA^*), $ $ \odot (A^*PB^*), $ respectively and $ U^*, V^*, W^* $ is the intersection of $ \{ B^*Z^*, C^*Y^* \}, $ $ \{ C^*X^*, A^*Z^* \}, $ $ \{ A^*Y^*, B^*X^* \}, $ respectively. Furthermore, by Property 4 we get $ R^* $ lies on $ A^*U^*, B^*V^*, C^*W^*. $

Note that $ \{ U^*, X^* \}, \{ V^*, Y^* \}, \{ W^*, Z^* \} $ are isogonal conjugate WRT $ \triangle A^*B^*C^*, $ so $ R^* $ is the isogonal conjugate of $ P $ WRT $ \triangle A^*B^*C^*. $ On the other hand, $ \triangle D^*E^*F^* $ is the pedal triangle of $ P $ WRT $ \triangle A^*B^*C^*, $ so $ S^* $ is the center of $ \odot (D^*E^*F^*) $ $ \Longrightarrow $ $ S^* $ is the midpoint of $ PR^*, $ hence we conclude that $ P, R, S $ are collinear and $ R $ is the midpoint of $ PS. $ $ \qquad \blacksquare $

Remark : See Interesting Properties related to Four 9-point Centers (Property 4) for another proof to this problem.

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54609
  • Total comments: 5
Search Blog
a