Ptolemy triangle and QA-Orthopole-circle

by TelvCohl, Feb 28, 2018, 11:08 AM

Notation

For two lines $ \tau, \eta $ and a points $ P, $ let $ \mathbb{T}_{\tau,\eta}(P) $ be the midpoint between the reflection of $ P $ in $ \tau $ and the reflection of $ P $ in $ \eta. $

Preliminaries

Lemma 1 : Given two lines $ \ell_1, \ell_2 $ and two points $ P,Q. $ Let $ X $ be the intersection of $ \ell_1, \ell_2. $ Then $ \triangle XPQ \stackrel{-}{\sim} \triangle X\mathbb{T}_{\ell_1,\ell_2} (P)\mathbb{T}_{\ell_1,\ell_2} (Q). $

Proof : Let $ P_i, Q_i $ be the projection of $ P,Q $ on $ \ell_i, $ respectively where $ i \in \{1,2 \} $ and let $ Y \equiv \mathbb{T}_{\ell_1,\ell_2} (P), Z \equiv \mathbb{T}_{\ell_1,\ell_2} (Q), $ then $ Y, Z $ is the orthocenter of $ \triangle XP_1P_2, \triangle XQ_1Q_2, $ respectively, so $ \frac{XP}{XQ} = \frac{XY}{XZ}. $ Since $ XY, XZ $ is the isogonal conjugate of $ XP, XQ $ WRT $ \angle (\ell_1, \ell_2), $ respectively, so we conclude that $ \triangle XPQ \stackrel{-}{\sim} \triangle XYZ. $ $ \qquad \blacksquare $

Corollary 1.1 : Given two lines $ \ell_1, \ell_2 $ and two points $ P,Q. $ Then $ PQ $ and $ \mathbb{T}_{\ell_1,\ell_2} (P)\mathbb{T}_{\ell_1,\ell_2} (Q) $ are antiparallel WRT $ \angle (\ell_1,\ell_2). $

Corollary 1.2 : Given two lines $ \ell_1, \ell_2 $ and three points $ P,Q, R. $ Then $ \triangle PQR \stackrel{-}{\sim} \triangle \mathbb{T}_{\ell_1,\ell_2} (P)\mathbb{T}_{\ell_1,\ell_2} (Q)\mathbb{T}_{\ell_1,\ell_2} (R). $

Corollary 1.3 : Given a $ \triangle ABC $ and a point $ P \in BC. $ Let $ E, F $ be the projection of $ B, C $ on $ CA, AB, $ respectively. Then $ \mathbb{T}_{AB,AC} (P) $ lies on $ EF. $

Lemma 2 : Given a quadrangle $ P_1P_2P_3P_4 $ with Euler-Poncelet point $ E $ and Isogonal center $ I. $ Then $ \mathbb{T}_{P_1P_2,P_3P_4} (I) = \mathbb{T}_{P_1P_3,P_2P_4} (I) = \mathbb{T}_{P_1P_4,P_2P_3} (I) = E. $

Proof : It suffices to prove $ \mathbb{T}_{P_1P_4, P_2P_3} (I) = E. $ Let $ O_4 $ be the circumcenter of $ \triangle P_1P_2P_3 $ and let the perpendicular from $ E $ to $ P_2P_3 $ cuts $ P_1P_4, IO_4 $ at $ U, V, $ respectively. By Miquel triangle and Isogonal center (Property 11), $ I $ is the image of the isogonal conjugate $ Q_4 $ of $ P_4 $ WRT $ \triangle P_1P_2P_3 $ under the inversion WRT $ \odot (O_4), $ so $ \measuredangle VIP_1 = \measuredangle Q_4P_1O_4 = \measuredangle (\perp P_2P_3, P_1P_4) = \measuredangle VUP_1 $ $ \Longrightarrow $ $ P_1, I, U, V $ are concyclic. Notice that $ E $ is the orthopole of $ O_4Q_4 $ WRT $ \triangle P_1P_2P_3 $ we get $ P_1V \perp O_4Q_4, $ so $ U $ is the projection of $ I $ on $ P_1P_4. $ Similarly, the intersection of the perpendicular from $ I,E $ to $ P_2P_3, P_1P_4, $ respectively lies on $ P_2P_3, $ so $ \mathbb{T}_{P_1P_4, P_2P_3} (I) = E. $ $ \qquad \blacksquare $

Lemma 3 : Given a quadrilateral $ P_1P_2P_3P_4 $ and a point $ T. $ Then the pedal circle of $ T $ WRT $ \triangle P_2P_3P_4, \triangle P_1P_3P_4, \triangle P_1P_2P_4, \triangle P_1P_2P_3 $ are concurrent.

Proof : Let $ H_{ij} $ be the projection of $ T $ on $ P_iP_j $ where $ i<j $ and $ i, j \in \{ 1,2,3,4 \}. $ Consider an inversion with center $ T $ and denote the image of $ \Box $ as $ {\Box}^*, $ then $ H^*_{ij}, H^*_{ik}, H^*_{il} $ are collinear where $ \{ i, j, k, l \} = \{ 1,2,3,4 \}, $ so $ \odot (H^*_{23}H^*_{24}H^*_{34}), \odot (H^*_{13}H^*_{14}H^*_{34}), \odot (H^*_{12}H^*_{14}H^*_{24}), \odot (H^*_{12}H^*_{13}H^*_{23}) $ are concurrent $ \Longrightarrow $ $ \odot (H_{23}H_{24}H_{34}), \odot (H_{13}H_{14}H_{34}), \odot (H_{12}H_{14}H_{24}), \odot (H_{12}H_{13}H_{23}) $ are concurrent. $ \qquad \blacksquare $

Lemma 4 : Given a $ \triangle ABC $ with orthocenter $ H $ and a point $ P. $ Let $ Y, Z $ be the reflection of $ P $ in $ CA, AB, $ respectively. Then the anti-Steiner point $ T $ of $ HP $ WRT $ \triangle ABC $ lies on $ \odot (AYZ). $

Proof : Let $ E, F $ be the reflection of $ H $ in $ CA, AB, $ respectively, then $ T $ lies on $ EY, FZ $ and $ E, F $ lie on $ \odot (ABC), $ so $ \measuredangle YAZ = \measuredangle EAF = \measuredangle ETF = \measuredangle YTZ $ $ \Longrightarrow $ $ T \in \odot (AYZ). $ $ \qquad \blacksquare $

Main result

In this section, I'll give a brief introduction to Ptolemy triangle, QA-Orthopole-circle and related transformation WRT a quadrangle. All symbols in this section bear the same meaning.

Notation

Given a quadrangle $ P_1P_2P_3P_4 $ with Euler-Poncelet point $ E, $ Isogonal center $ I $ and a point $ T. $ Let $ T_X \equiv \mathbb{T}_{P_1P_4, P_2P_3} (T), T_Y \equiv \mathbb{T}_{P_1P_3, P_2P_4} (T), T_Z \equiv \mathbb{T}_{P_1P_2, P_3P_4} (T). $

Property 1 : $ \triangle T_XT_YT_Z $ is the image of the pedal triangle of $ P_i $ WRT $ \triangle P_jP_kP_l $ under the spiral similarity with center $ E, $ ratio $ \frac{IT}{IP_i} $ and angle $ \measuredangle TIP_i $ where $ \{ i,j,k,l \} = \{ 1,2,3,4 \}. $

Proof : It suffices to prove the case when $ i=4. $ Let $ \triangle A_4B_4C_4 $ be the pedal triangle of $ P_4 $ WRT $ \triangle P_1P_2P_3. $ From Lemma 2 $ \Longrightarrow $ $ \mathbb{T}_{P_1P_4, P_2P_3} (I) = E, $ so combining Corollary 1.2 for lines $ P_1P_4, P_2P_3 $ and points $ P_4, I, T $ we get $ \triangle ITP_4 \stackrel{-}{\sim} \triangle ET_XA_4. $ Similarly, we can prove $ \triangle ITP_4 \stackrel{-}{\sim} \triangle ET_YB_4, $ $ \triangle ITP_4 \stackrel{-}{\sim} \triangle ET_ZC_4, $ so $ \triangle T_XT_YT_Z $ is the image of $ \triangle A_4B_4C_4 $ under the spiral similarity with center $ E, $ ratio $ \frac{IT}{IP_4} $ and angle $ \measuredangle TIP_4. $ $ \qquad \blacksquare $

Corollary 2 : $ E $ lies on $ \odot (T_XT_YT_Z). $

Corollary 3 : Let $ O_T $ be the circumcenter of $ \triangle T_XT_YT_Z. $ Then the mapping $ T \mapsto O_T $ is linear.

Proof : Let $ M_4 $ be the circumcenter $ \triangle A_4B_4C_4, $ then from Property 1 we get $ \triangle ITP_4 \stackrel{-}{\sim} \triangle EO_TM_4, $ so the mapping $ T \mapsto O_T $ is linear. $ \qquad \blacksquare $

Remark : $ \triangle T_XT_YT_Z $ is called the Ptolemy triangle of $ T $ and the mapping $ T \mapsto O_T $ is called the QA-Orthopole transformation WRT the quadrangle $ P_1P_2P_3P_4. $

Property 4 : Let $ \varrho $ be a line passing through $ T, $ $ R_{ij} $ be the intersection of $ \varrho $ with $ P_iP_j $ and $ H_{kl} $ be the projection of $ R_{ij} $ on $ P_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4 \}. $ Then $ H_{12}H_{34}, H_{13}H_{24}, H_{14}H_{23} $ are concurrent on $ \odot (O_T). $

Proof : From Corollary 1.3 $\Longrightarrow $ $ T_Y \in H_{13}H_{24}, $ $ T_Z \in H_{12}H_{34}, $ so note that $ \{ \varrho, H_{13}H_{24} \}, \{ \varrho, H_{12}H_{34}\} $ are antiparallel WRT $ \angle (P_1P_3, P_2P_4), \angle (P_1P_2, P_3P_4), $ respectively we get $$ \measuredangle (H_{13}H_{24}, H_{14}H_{23}) = \measuredangle (H_{13}H_{24}, P_2P_4) + \measuredangle (P_2P_4, P_3P_4) + \measuredangle (P_3P_4, H_{12}H_{34}) = \measuredangle (P_1P_3, \varrho) + \measuredangle (P_2P_4, P_3P_4) + \measuredangle (\varrho, P_1P_2) = \measuredangle (P_1P_3, P_1P_2) + \measuredangle (P_2P_4, P_3P_4) = \measuredangle T_YT_XT_Z, $$hence the intersection of $ H_{13}H_{24}, H_{12}H_{34} $ lies on $ \odot (O_T). $ Similarly, the intersection of $ \{ H_{12}H_{34}, H_{14}H_{23} \}, \{ H_{14}H_{23}, H_{13}H_{24}\} $ lies on $ \odot (O_T), $ so $ H_{12}H_{34}, H_{13}H_{24}, H_{14}H_{23}, \odot (O_T) $ are concurrent at $ T_{\varrho}. $ $ \qquad \blacksquare $

Remark : The mapping $ \varrho \mapsto T_{\varrho} $ is called the Quang Duong’s transformation WRT the quadrangle $ P_1P_2P_3P_4. $

Property 5 : Let $ O_i $ be the circumcenter of $ \triangle P_jP_kP_l $ and $ V_i $ be the orthopole of $ O_iT $ WRT $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4 \}. $ Then $ V_i $ lies on $ \odot (O_T) $ for any $ i \in \{ 1,2,3,4 \}. $

Proof : Let $ U $ be the midpoint of $ P_2P_3, $ $ Q $ be the projection of $ T $ on $ P_2P_3 $ and $ E_1, E_4 $ be the Poncelet point of $ P_2P_3P_4T, P_1P_2P_3T, $ respectively, then $ E, U, E_1, V_1 $ lie on the 9-point circle of $ \triangle P_2P_3P_4 $ and $ E, U, E_4, V_4 $ lie on the 9-point circle of $ \triangle P_1P_2P_3. $ From Lemma 3 $ \Longrightarrow $ the pedal circle of $ T $ WRT $ \triangle P_2P_3P_4, \triangle P_1P_3P_4, \triangle P_1P_2P_4, \triangle P_1P_2P_3 $ are concurrent at $ R, $ so note that $ Q, U, E_1, E_4 $ lie on the 9-point circle of $ \triangle TP_2P_3 $ we get $$ \measuredangle EV_1R + \measuredangle RV_4E = \measuredangle EV_1E_1 + \measuredangle E_1V_1R + \measuredangle RV_4E_4 + \measuredangle E_4V_4E = \measuredangle EUE_1 + \measuredangle E_1QR + \measuredangle RQE_4 + \measuredangle E_4UE = \measuredangle E_1QE_4 + \measuredangle E_4UE_1 = 0, $$hence $ E, U, V_1, V_4 $ are concyclic. Similarly, we can prove $ V_2, V_3 $ lie on $ \odot (EUV_4), $ so $ E, U, V_1, V_2, V_3, V_4 $ lie on a circle $ \odot (O_T^*). $

Let $ N_i $ be the 9-point center of $ \triangle P_jP_kP_l $ where $ \{ i,j,k,l \} = \{ 1,2,3,4 \}. $ Since $ O_1O_4, O_1T $ is the Steiner line of $ U, V_1 $ WRT the medial triangle of $ \triangle P_2P_3P_4, $ respectively, so $ \measuredangle O_T^*N_1N_4 = \measuredangle V_1EU = \measuredangle O_4O_1T. $ Similarly, we can prove $ \measuredangle O_T^*N_4N_1 = \measuredangle O_1O_4T, $ so $ \triangle O_T^*N_1N_4 \stackrel{-}{\sim} \triangle TO_1O_4. $ Analogously, we can prove $ \triangle O_T^*N_2N_4 \stackrel{-}{\sim} \triangle TO_2O_4, $ $ \triangle O_T^*N_3N_4 \stackrel{-}{\sim} \triangle TO_3O_4, $ so $ \triangle N_1N_2N_3 \cup O_T^* \stackrel{-}{\sim} \triangle O_1O_2O_3 \cup T. $

On the other hand, from Interesting Properties related to Four 9-point Centers (Property 1 and Corollary 11) we get $ \triangle N_1N_2N_3 \cup M_4 \cup E \stackrel{-}{\sim} \triangle O_1O_2O_3 \cup P_4 \cup I $ and $ E, I $ is the image of $ M_4, P_4 $ under the inversion WRT $ \odot (N_1N_2N_3), \odot (O_1O_2O_3), $ so combining $ \triangle EO_TM_4 \stackrel{-}{\sim} \triangle ITP_4, $ by Property 1, we conclude that $ \triangle N_1N_2N_3 \cup O_T \stackrel{-}{\sim} \triangle O_1O_2O_3 \cup T $ $ \Longrightarrow $ $ O_T \equiv O_T^* $ and $ \odot (O_T) \equiv \odot (O_T^*). $ $ \qquad \blacksquare $

Remark : $ \odot (O_T) $ is called the QA-Orthopole-circle of $ T $ WRT the quadrangle $ P_1P_2P_3P_4. $

Property 6 : The image of $ \varrho $ under the QA-Orthopole transformation WRT $ P_1P_2P_3P_4 $ is the perpendicular bisector of $ ET_{\varrho}. $

Proof : Let $ \gamma $ be the perpendicular bisector of $ ET_{\varrho}, $ then note that $ ET_X $ and $ IT $ are antiparallel WRT $ \angle (P_1P_4, P_2P_3), $ by Corollary 1.1 and Lemma 2, we get $ \measuredangle (EO_T, \gamma) =  \measuredangle (ET_X, T_{\varrho}T_X) =  \measuredangle (\varrho, IT), $ so $ \gamma $ is the image of $ \varrho $ under the QA-Orthopole transformation WRT $ P_1P_2P_3P_4. $ $ \qquad \blacksquare $

Let $ \triangle XYZ $ be the diagonal triangle of the quadrangle $ P_1P_2P_3P_4 $ where $ X, Y, Z $ is the intersection of $ \{ P_1P_4, P_2P_3 \}, \{ P_1P_3, P_2P_4 \}, \{ P_1P_2, P_3P_4 \}, $ respectively, then from New proof of the property of Poncelet point and Corollary 2 we know $ E $ is one of the intersection of $ \odot (O_T) $ and $ \odot (XYZ). $ The following property gives the character of another intersection of these two circles.

Property 7 : Let $ H^{\mathbf{D}} $ be the orthocenter of $ \triangle XYZ. $ Then the anti-Steiner point $ S $ of $ H^{\mathbf{D}}T $ WRT $ \triangle XYZ $ lies on $ \odot (O_T). $

Proof : Let $ X^T, Y^T. Z^T $ be the reflection of $ T $ in $ YZ, ZX, XY, $ respectively, then $ T_X, T_Y, T_Z $ lie on $ \odot (XY^TZ^T), \odot (YZ^TX^T), \odot (ZX^TY^T), $ respectively (well-known). On the other hand, from Lemma 4 we know $ S $ lies on $ \odot (XY^TZ^T), \odot (YZ^TX^T), \odot (ZX^TY^T), $ so $$ \measuredangle T_YST_Z = \measuredangle T_YSX^T + \measuredangle X^TST_Z = \measuredangle T_YYX^T + \measuredangle X^TZT_Z. $$Note that $ \{ YT, YT_Y \}, \{ ZT, ZT_Z \} $ are isogonal conjugate WRT $ \angle (T_1T_3, T_2T_4), \angle (T_1T_2, T_3T_4), $ respectively, so we get $$ \measuredangle T_YST_Z = \measuredangle T_YYP_1 + \measuredangle P_1YX^T + \measuredangle X^TZP_1 + \measuredangle P_1ZT_Z = \measuredangle P_4YT + \measuredangle P_1YX^T + \measuredangle X^TZP_1 + \measuredangle TZP_4 = \measuredangle P_4YZ + \measuredangle P_1YZ + \measuredangle YZP_1 + \measuredangle YZP_4 = \measuredangle P_2P_4P_3 + \measuredangle P_3P_1P_2, $$hence by Property 1 we conclude that $ \measuredangle T_YST_Z = \measuredangle T_YT_XT_Z $ $ \Longrightarrow $ $ S \in \odot (O_T). $ $ \qquad \blacksquare $

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54232
  • Total comments: 5
Search Blog
a