Connection between Inconic and Circumconic

by TelvCohl, Aug 7, 2018, 2:57 PM

Notation : Given a $ \triangle ABC $ and a point $ T. $ Let $ \tau (T, \triangle ABC), $ $ \mathcal{C} (T, \triangle ABC), $ $ \mathcal{K} (T, \triangle ABC) $ be the tripolar of $ T,$ inconic of $ \triangle ABC $ with perspector $ T, $ circumconic of $ \triangle ABC $ with perspector $ T $ WRT $ \triangle ABC, $ respectively. When no confusion can be caused, we abbreviate $ \square (T, \triangle ABC) $ as $ \square_{T}. $

Property : Given a $ \triangle ABC $ with isogonal conjugate $ (P,Q), (R,S). $ Then $ \tau_R $ is tangent to the $ \mathcal{K}_{P} $ if and only if $ S\in \mathcal{C}_{Q}. $

Proof :

Lemma 1 : Given a $ \triangle ABC $ with isogonal conjugate $ (P,Q), (R,S). $ Then $ P\in\tau_{R} \Longleftrightarrow R\in\mathcal{K}_{P} \Longleftrightarrow S \in \tau_{Q}. $

Proof : First, when a line $\ell $ passing through $ P $ varies around $ P, $ the mapping $ \ell \cap AB \mapsto \ell \cap AC $ is a homography between $ AB $ and $ AC, $ so the mapping sending the harmonic conjugate of $ \ell \cap AB $ WRT $ (A,B) $ to the harmonic conjugate of $ \ell \cap AC $ WRT $ (A,C) $ is a homography, too $ \Longrightarrow $ the locus of the tripole of $ \ell $ WRT $ \triangle ABC $ is a circumconic of $ \triangle ABC, $ hence to prove the first part it suffices to prove $ P\in\tau_{R} $ when $ R \in \mathcal{K}_{P}. $ Let $ \triangle P^aP^bP^c $ be the anticevian triangle of $ P $ WRT $ \triangle ABC, $ then $ \mathcal{K}_{P} $ is tangent to $ P^bP^c, P^cP^a, P^aP^b $ at $ A, B, C, $ respectively. Let $ \triangle R_aR_bR_c $ be the cevian triangle of $ R $ WRT $ \triangle ABC $ and assume $ R\in\mathcal{K}_{P}, $ then $ P^a $ lie on the polar $ R_bR_c $ of $ R_a $ WRT $ \mathcal{K}_{P}, $ so note that $ \tau_{R} $ passes through the harmonic conjugate of $ R_b, R_c $ WRT $ (A,C), (A,B), $ respectively we get $ P\in\tau_{R}. $

For the second part, let $ X_P, X_Q $ be the intersection of $ BC $ with $ \tau_{P}, \tau_{Q}, $ respectively, then $ AX_P, AX_Q $ are isogonal conjugate WRT $ \angle A $ $ \Longrightarrow $ the isogonal conjugate of $ \tau_{Q} $ WRT $ \triangle ABC $ is tangent to $ P^bP^c $ at $ A. $ Similarly, we can prove the isogonal conjugate of $ \tau_{Q} $ WRT $ \triangle ABC $ is tangent to $ P^cP^a, P^aP^b $ at $ B,C, $ respectively, so $ \mathcal{K}_{P} $ is the isogonal conjugate of $ \tau_{Q} $ WRT $ \triangle ABC $ $ \qquad \blacksquare $

Lemma 2 : Given a $ \triangle ABC $ and a point $ P. $ Then the perspector of the circumconic of $ \triangle ABC $ with center $ P $ is the isotomcomplement of the anticomplement of $ P $ WRT $ \triangle ABC. $

Proof : Let $ Q $ be the anticomplement of $ P $ WRT $ \triangle ABC, $ $ R $ be the isotomcomplement of $ Q $ WRT $ \triangle ABC $ and $ A_P $ be the reflection of $ A $ in $ P. $ By Lemma 1, it suffices to prove that the isogonal conjugate $ A_P^* $ of $ A_P $ WRT $ \triangle ABC $ lies on $ \tau_S $ where $ S $ is the isogonal conjugate $ R $ WRT $ \triangle ABC. $ Let $ \triangle Q_aQ_bQ_c $ be the cevian triangle of $ Q $ WRT $ \triangle ABC, $ $ \triangle R^aR^bR^c $ be the anticevian triangle of $ R $ WRT $ \triangle ABC $ and $ B_s, C_s $ be the intersection of $ CA, AB $ with $ \tau_S, $ respectively. Note that $ \triangle Q_aQ_bQ_c, \triangle R^aR^bR^c$ are homothetic and $ BQ \parallel CA_P, CQ \parallel BA_P, $ so we conclude that $$ B(C,A_P^*;B_s,A) = B(A,A_P;R^a,C) = Q_c(A,C;Q_a,\parallel BC) = Q_b(B,A;Q_a,\parallel BC) = C(A,A_P;B, R^a) = C(B,A_P^*;A,C_s). $$i.e. $ A_P^*\in\tau_S. $ $ \qquad \blacksquare $

Corollary 2.1 : Given a $ \triangle ABC $ and points $ P, Q. $ Then $ \tau_Q $ is tangent to $ \mathcal{K}_{P} $ if and only if $ P \in \mathcal{C}_{Q}. $

Proof : Consider the homology taking $ Q $ to the centroid of $ \triangle ABC, $ then the desired result simplified follows from Lemma 2. $ \qquad \blacksquare $

Back to the main problem :

By Lemma 1, $ \mathcal{K}_{P}, \mathcal{K}_{S} $ is the isogonal conjugate of $ \tau_Q, \tau_R $ WRT $ \triangle ABC, $ respectively, so $ \tau_R $ is tangent to the $ \mathcal{K}_{P} $ if and only if $ \tau_Q $ is tangent to $ \mathcal{K}_{S}. $ But from Corollary 2.1 we know $ \tau_Q $ is tangent to $ \mathcal{K}_{S} $ if and only if $ S \in \mathcal{C}_{Q}, $ so we conclude that $ \tau_R $ is tangent to the $ \mathcal{K}_{P} $ if and only if $ S\in \mathcal{C}_{Q}. $ $ \qquad \blacksquare $
This post has been edited 2 times. Last edited by TelvCohl, Feb 14, 2020, 10:37 AM

Comment

J
U VIEW ATTACHMENTS T PREVIEW J CLOSE PREVIEW rREFRESH
J

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54229
  • Total comments: 5
Search Blog
a