Collinearity of Kiepert perspectors

by TelvCohl, Sep 1, 2018, 7:38 AM

Preliminaries

Lemma 1 : Given a $ \triangle ABC $ with isogonal conjugate $ (P,P^*), (Q,Q^*). $ Then $ S $ $ \equiv $ $ PQ $ $ \cap $ $ P^*Q^* $ and $ T $ $ \equiv $ $ PQ^* $ $ \cap $ $ P^*Q $ are isogonal conjugate WRT $ \triangle ABC. $

Proof : Let $ X, Y $ be the intersection of $ AQ $ with $ PQ^*, P^*Q^*, $ respectively. Since $$ A(Q,Q^*;T,P) = (X,Q^*;T,P) \stackrel{Q}{=} (Y,Q^*;P^*,S) = A(Q,Q^*;P^*,S) = A(Q^*,Q;S,P^*), $$so $ (AS, AT) $ are isogonal conjugate WRT $ \angle A. $ Similarly, $ (BS, BT), (CS, CT) $ are isogonal conjugate WRT $ \angle B, \angle C, $ respectively, so we conclude that $ S, $ $ T $ are isogonal conjugate WRT $ \triangle ABC. $ $  \qquad \blacksquare  $

Lemma 2 : Given a $ \triangle ABC $ and a point $ U $ lying on the perpendicular bisector of $ BC. $ Let $ V $ be the point such that $ \measuredangle ABU = \measuredangle VCB, \measuredangle ACU = \measuredangle VBC. $ Then $ A, U, V $ are collinear.

Proof : Let $ W $ be the reflection of $ A $ in the perpendicular bisector of $ BC, $ then $ \measuredangle UCW = \measuredangle VCB, \measuredangle UBW = \measuredangle VBC $ $ \Longrightarrow $ $ V,W $ are isogonal conjugate WRT $ \triangle BUC, $ so we conclude that $ A, U, V $ are collinear. $  \qquad \blacksquare  $

Lemma 3 : Given a $ \triangle ABC $ with circumcircle $ \odot (O, R) $ and 9-point center $ N. $ Let $ P,Q $ be the isogonal conjugate WRT $ \triangle ABC $ and $ M $ be the midpoint of $ PQ. $ Then $ MN = \frac{OP \cdot OQ}{2R}. $

Proof : Let $ \triangle A_1B_1C_1 $ be the circumcevian triangle of $ P $ WRT $ \triangle ABC $ and $ A_2, B_2, C_2 $ be the reflection of $ A_1, B_1, C_1 $ in $ BC, CA, AB, $ respectively, then from Properties of Hagge circle (Property 1, Corollary 1.1, Property 3) we get $ H \in \odot (A_2B_2C_2), $ the reflection $ T $ of $ Q $ in $ N $ is the circumcenter of $ \triangle A_2B_2C_2 $ and $ \triangle A_1B_1C_1 \cup P \stackrel{-}{\sim} \triangle A_2B_2C_2 \cup P $ where $ H $ is the orthocenter of $ \triangle ABC, $ so $$ \frac{OP}{2MN} = \frac{OP}{TP} = \frac{\text{circumradius of }\triangle A_1B_1C_1}{\text{circumradius of }\triangle A_2B_2C_2} = \frac{R}{HT} = \frac{R}{OQ}. \qquad \blacksquare $$
Main result

Notation : Given a $ \triangle ABC $ with centroid $ G, $ circumcenter $ O, $ orthocenter $ H, $ 9-point center $ N, $ symmedian point $ K $ and $ \theta \in \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ]. $ Let $ \triangle A_{\theta}B_{\theta}C_{\theta} $ be the Kiepert triangle of $ \triangle ABC $ with angle $ \theta, $ $ K_{\theta} $ be the perspector of $ \triangle ABC, \triangle A_{\theta}B_{\theta}C_{\theta}, $ and let $ A^*_{\theta}, B^*_{\theta}, C^*_{\theta}, K^*_{\theta} $ be the isogonal conjugate of $ A_{\theta}, B_{\theta}, C_{\theta}, K_{\theta} $ WRT $ \triangle ABC, $ respectively.

Property 1 : $ \color{blue} K \in K_{\theta}K_{-\theta}. $

Proof : Let $ \triangle T_aT_bT_c $ be the tangential triangle of $ \triangle ABC. $ Note that $ \measuredangle CBC_{-\theta} = \measuredangle T_bCB_{\theta}, \measuredangle BCB_{-\theta} = \measuredangle T_cBC_{\theta}, $ so we conclude that $$ B(C,T_b; B_{\theta},B_{-\theta}) = C(B,T_b; B_{\theta},B_{-\theta}) = B(C,T_c;C_{\theta},C_{-\theta}) = C(B,T_c;C_{\theta},C_{-\theta}). $$i.e. $ K \equiv BT_b \cap CT_c, K_{\theta} \equiv BB_{\theta} \cap CC_{\theta}, K_{-\theta} \equiv BB_{-\theta} \cap CC_{-\theta} $ are collinear. $ \qquad \blacksquare $

Corollary 1.1 : $ \color{blue} G \in K_{\theta}K^*_{-\theta}. $

Proof : From Property 1 we get $ K $ is the intersection of $ K_{\theta}K_{-\theta}, K^*_{\theta}K^*_{-\theta}, $ so by Lemma 1 we conclude that $ G $ lies on $ K_{\theta}K^*_{-\theta}, K_{-\theta}K^*_{\theta}. $ $ \qquad \blacksquare $

Property 2 : $ \color{blue} H \in A_{\theta}A^*_{\frac{\pi}{2}-\theta}, B_{\theta}B^*_{\frac{\pi}{2}-\theta}, C_{\theta}C^*_{\frac{\pi}{2}-\theta}, K_{\theta}K^*_{\frac{\pi}{2}-\theta}. $

Proof : Simple angle chasing yields $ \measuredangle HBA_{\theta} = \measuredangle A^*_{\frac{\pi}{2} - \theta}CB, \measuredangle HCA_{\theta} = \measuredangle A^*_{\frac{\pi}{2} - \theta}BC, $ so by Lemma 2 we get $ H $ lies on $ A_{\theta}A^*_{\frac{\pi}{2}-\theta}. $ Similarly, we can prove $ H \in B_{\theta}B^*_{\frac{\pi}{2}-\theta}, C_{\theta}C^*_{\frac{\pi}{2}-\theta}. $ By Desargues's theorem for $ \triangle BC_{\theta}C^*_{\frac{\pi}{2}-\theta} $ and $ \triangle CB_{\theta}B^*_{\frac{\pi}{2}-\theta} $ $ \Longrightarrow $ $ BC, B_{\theta}C_{\theta}, B^*_{\frac{\pi}{2}-\theta}C^*_{\frac{\pi}{2}-\theta} $ are concurrent, so by Desargues's theorem for $ \triangle BB_{\theta}B^*_{\frac{\pi}{2}-\theta} $ and $ \triangle CC_{\theta}C^*_{\frac{\pi}{2}-\theta} $ we conclude that $ H $ lies on $ K_{\theta}K^*_{\frac{\pi}{2}-\theta}. $ $ \qquad \blacksquare $

Corollary 2.1 : $ \color{blue} O \in A^*_{\theta}A^*_{\frac{\pi}{2}-\theta}, B^*_{\theta}B^*_{\frac{\pi}{2}-\theta}, C^*_{\theta}C^*_{\frac{\pi}{2}-\theta}, K_{\theta}K_{\frac{\pi}{2}-\theta}. $

Proof : From Property 2 we get $ H $ is the intersection of $ K_{\theta}K^*_{\frac{\pi}{2}-\theta}, K_{\frac{\pi}{2}-\theta}K^*_{\theta}, $ so by Lemma 1 $ \Longrightarrow $ $ O $ lies on $ K_{\theta}K_{\frac{\pi}{2}-\theta}. $ Analogously, we can prove $ O \in A^*_{\theta}A^*_{\frac{\pi}{2}-\theta}, B^*_{\theta}B^*_{\frac{\pi}{2}-\theta}, C^*_{\theta}C^*_{\frac{\pi}{2}-\theta}. $ $ \qquad \blacksquare $

Property 3 : Given $ \color{blue} \phi, \sigma \in \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ]. $ Then $ \color{blue} K^*_{-(\phi + \sigma)} \in K_{\phi} K_{\sigma}. $

Proof : Note that for a fixed $ \tau \in \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ] $ the mapping $ \mathbb{I}: K_{\theta} \mapsto K_{\tau - \theta} $ is an involution on the Kiepert hyperbola of $ \triangle ABC, $ so $ K_{\theta} K_{\tau - \theta} $ passes through the pole $ X $ of $ \mathbb{I} $ for all $ \theta \in \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ]. $ Consider the case when $ \theta = 0 $ and $ \theta = \frac{\pi}{2} $ we conclude that $ X = K^*_{-\tau} $ by Corollary 1.1 and Property 2 $ \Longrightarrow $ $ K^*_{-\tau} \in K_{\theta} K_{\tau - \theta}. $ $ \qquad \blacksquare $

Property 4 : Let $  \color{blue} T $ be the intersection of $  \color{blue} OH $ with $  \color{blue} A_{\theta}A^*_{\theta}. $ Then $  \color{blue} \frac{OH}{OT} = 4\cos^2\theta-1. $

Proof : Let $ D $ be the intersection of $ AA^*_{\theta} $ with the perpendicular bisector of $ BC $ and let $ BD = CD = \eta, $ then from $ \measuredangle ADO = \measuredangle DAH = \measuredangle OAA_{\theta} $ we get $ OA^2 = OD \cdot OA_{\theta} $ $ \Longrightarrow $ $ D $ is the image of $ A_{\theta} $ under the inversion WRT $ \odot(O), $ so $ \eta = \frac{BC \cdot R}{2 \cdot OA_{\theta} \cdot \cos \theta}. $ On the other hand, by Lemma 2 we get $ \measuredangle A^*_{\theta}CD = \measuredangle ABC,  \measuredangle A^*_{\theta}BD = \measuredangle ACB, $ so $$ \frac{HA^*_{\theta}}{A_{\frac{\pi}{2}-\theta}A^*_{\theta}} = \frac{AA^*_{\theta}}{DA^*_{\theta}} = \frac{2R \cdot \sin\theta}{\eta} = \frac{4 \cdot OA_{\theta} \cdot \sin \theta \cdot \cos \theta}{BC},$$hence by Menelaus' theorem for $ \triangle OHA_{\frac{\pi}{2}-\theta} $ and $ \overline{A^*_{\theta}A_{\theta}T} $ we conclude that $$ \frac{HT}{OT} = \frac{HA^*_{\theta}}{A_{\frac{\pi}{2}-\theta}A^*_{\theta}} \cdot \frac{A_{\frac{\pi}{2}-\theta}A_{\theta}}{OA_{\theta}} = -2\cos 2\theta = -2\left(2\cos^2\theta -1 \right ) \Longrightarrow \frac{OH}{OT} = 4\cos^2\theta-1. \qquad \blacksquare $$
Corollary 4.1 : $ \color{blue} A_{\theta}A^*_{\theta}, A_{-\theta}A^*_{-\theta}, B_{\theta}B^*_{\theta}, B_{-\theta}B^*_{-\theta}, C_{\theta}C^*_{\theta}, C_{-\theta}C^*_{-\theta}, K_{\theta}K^*_{\theta}, K_{-\theta}K^*_{-\theta} $ are concurrent on $  \color{blue} OH. $

Proof : From Property 4, $ A_{\theta}A^*_{\theta}, A_{-\theta}A^*_{-\theta}, B_{\theta}B^*_{\theta}, B_{-\theta}B^*_{-\theta}, C_{\theta}C^*_{\theta}, C_{-\theta}C^*_{-\theta} $ are concurrent at $ V. $ By Desargues's theorem for $ \triangle BC_{\theta}C^*_{\theta} $ and $ \triangle CB_{\theta}B^*_{\theta} $ we get $ BC, B_{\theta}C_{\theta}, B^*_{\theta}C^*_{\theta} $ are concurrent, so by Desargues's theorem for $ \triangle BB_{\theta}B^*_{\theta} $ and $ \triangle CC_{\theta}C^*_{\theta} $ we conclude that $ V $ lies on $ K_{\theta}K^*_{\theta}. $ Analogously, we can prove $ V \in K_{-\theta}K^*_{-\theta}. $ $ \qquad \blacksquare $

Property 5 : $ \color{blue} N \in K_{\theta}K_{\frac{\pi}{2}+\theta}. $

Proof : Let $ D_{-\theta}, E_{-\theta}, F_{-\theta} $ be the midpoint of $ AA_{-\theta}, BB_{-\theta}, CC_{-\theta}, $ respectively. First, note that $ AB_{\theta}A_{-\theta}C_{\theta}, BC_{\theta}B_{-\theta}A_{\theta}, CA_{\theta}C_{-\theta}B_{\theta} $ are parallelogram, so $ \triangle D_{-\theta}E_{-\theta}F_{-\theta} $ is the medial triangle of $ \triangle A_{\theta}B_{\theta}C_{\theta}.$ On the other hand, simple angle chasing yields the second intersection of $ AA_{\frac{\pi}{2}-\theta} $ with $ \odot (A_{\frac{\pi}{2}-\theta}BC) $ lies on $ \odot (B_{\theta}), \odot (C_{\theta}) $ where $ \odot (B_{\theta}), \odot (C_{\theta}) $ is the circle with center $ B_{\theta}, C_{\theta} $ and containing $ A, $ so $ AK_{\frac{\pi}{2}-\theta} \perp E_{\theta} F_{\theta}. $ Analogously, we can prove $ BK_{\frac{\pi}{2}-\theta} \perp F_{\theta} D_{\theta}, CK_{\frac{\pi}{2}-\theta} \perp D_{\theta} E_{\theta}, $ so by Sondat's theorem for $ \triangle ABC $ and $ \triangle D_{-\theta}E_{-\theta}F_{-\theta} $ we conclude that $ N \in K_{-\theta} K_{\frac{\pi}{2}-\theta}. $ $ \qquad \blacksquare $

Application

Notation : Let $ G, O, N, K, F_1, F_2, S_1, S_2 $ be the centroid, circumcenter, 9-point center, symmedian point, 1st Fermat point, 2nd Fermat point, 1st Isodynamic point, 2nd Isodynamic point of $ \triangle ABC, $ respectively.

Theorem (Basic properties of Fermat points and Isodynamic points) :

(1) $ \qquad $ $ G \in F_1S_2, F_2S_1. $ $ \qquad $ $ K \in F_1F_2, S_1S_2. $ $ \qquad $ $ \overline{GON} \parallel F_1S_1 \parallel F_2S_2. $ $ \qquad $ (2) $ \qquad $ $GK $ is the G-symmedian of $ \triangle GF_1F_2. $ $ \qquad $ (3) (Lester circle) $ O, N, F_1, F_2 $ are concyclic.

Proof : (1) is a consequence of the results in the previous section. Let $ T $ be the intersection of $ GO, F_1F_2 $ and $ \triangle^{1}_{\mathbf{N}}, \triangle^{2}_{\mathbf{N}} $ be the 1st Napoleon triangle, 2nd Napoleon triangle of $ \triangle ABC, $ respectively. First, note that $ O $ lies on $ S_1S_2, $ so $ T $ is the reflection of $ O $ in $ G. $ Since $ G $ is the center of $ \triangle^{i}_{\mathbf{N}}, $ $ F_{j} $ lies on the circumcircle of $ \triangle^{i}_{\mathbf{N}} $ and $ O,F_i $ are isogonal conjugate of $ \triangle^{i}_{\mathbf{N}} $ for $ \{ i, j \} = \{ 1, 2 \}, $ so by Lemma 3 we get $$ \frac{KF_1}{KF_2} = \frac{TF_1}{TF_2} = \frac{GO \cdot GF_1}{GO \cdot GF_2} \cdot \frac{\text{circumradius of }\triangle^{2}_{\mathbf{N}}}{\text{circumradius of }\triangle^{1}_{\mathbf{N}}} = \left ( \frac{GF_1}{GF_2} \right )^2, $$hence $ GK $ is the G-symmedian of $ \triangle GF_1F_2 $ and (2) is proved. Finally, from the previous conclusion and $ (T,K; F_1, F_2) = -1 $ we get $ \overline{GON} $ is tangent to $ \odot (GF_1F_2) $ at $ G, $ so $ TO \cdot TN = {TG}^2 = TF_1 \cdot TF_2 $ and hence we conclude that $ O, N, F_1, F_2 $ are concyclic. i.e. (3) is proved. $ \qquad \blacksquare $

Remark : It is possible to prove (2) or (3) directly.

1. Proof of (2) without using (1) :

Since $ F_1, F_2 $ are antigonal conjugate WRT $ \triangle ABC, $ so the center of the Kiepert hyperbola $ \mathcal{K} $ of $ \triangle ABC $ is the midpoint of $ F_1F_2 $ $ \Longrightarrow $ the isogonal conjugate of $ \mathcal{K} $ WRT $ \triangle GF_1F_2 $ is the perpendicular bisector of $ F_1F_2, $ hence the tangent of $ \mathcal{K} $ at $ G $ is the G-symmedian of $ \triangle GF_1F_2. $ On the other hand, $ \mathcal{K} $ is the isotomic conjugate of $ GK $ WRT $ \triangle ABC, $ so $ GK $ is tangent to $ \mathcal{K} $ at $ G $ and hence $ GK $ is the G-symmedian of $ \triangle GF_1F_2. $ $ \qquad \blacksquare $

2. Proof of (3) without using (1) and (2) :

Lemma : Given a $ \triangle ABC $ and a circle $ \Omega $ passing through $ B $ and $ C. $ Let $ E, F $ be the intersection of $ \Omega $ with $ CA, AB, $ respectively and let $ Y \in BE, Z \in CF $ be the points such that $ \frac{BE}{EY} = \frac{CF}{FZ} = \kappa. $ Suppose that $ U, V $ is the intersection of the tangent of $ \odot (AYZ) $ at $ A $ with $ BC, YZ, $ respectively, then $ \frac{UA}{AV} = \kappa. $

Proof : Let $ B^* \in CA, C^* \in AB $ be the points such that $ \frac{BA}{AC^*} = \frac{CA}{AB^*} = \kappa $ and let $ A^* $ be the intersection of $ B^*Z, C^*Y. $ Clearly, $ \triangle ABC, \triangle A^*B^*C^* $ are homothetic and $ \triangle AEY \stackrel{-}{\sim} \triangle AFZ, $ so $$ \frac{VY}{VZ} = \left ( \frac{AY}{AZ} \right )^2 = \left ( \frac{AE}{AF} \right )^2 =  \frac{AE}{AF} \cdot \frac{AB}{AC} = \frac{C^*Y}{B^*Z} \cdot \frac{A^*B^*}{A^*C^*}, $$hence by Menelaus' theorem we conclude that $ V \in B^*C^* $ $ \Longrightarrow $ $ \frac{UA}{AV} = \frac{\text{dist}(A,BC)}{\text{dist}(A,B^*C^*)} = \kappa. $ $ \qquad \blacksquare $

Back to the main problem :

Let $ \triangle N^{1}_aN^{1}_bN^{1}_c, \triangle N^{2}_aN^{2}_bN^{2}_c $ be the 1st Napoleon triangle, 2nd Napoleon triangle of $ \triangle ABC, $ respectively and let $ T^* $ be the intersection of $ F_1F_2 $ with the tangent of $ \odot (GF_1F_2) $ at $ G. $ Since $ F_1, F_2 $ is the reflection of $ N^{2}_a, N^{1}_a $ in $ GN^{1}_a, GN^{2}_a, $ respectively, so by Lemma for $ \triangle GN^{1}_aN^{2}_a $ we get the reflection $ \overline{T} $ of $ T^* $ in $ G $ lies on the perpendicular bisector of $ BC. $ Similarly, we can prove $ \overline{T} $ lies on the perpendicular bisector of $ CA, AB, $ so $ \overline{T} \equiv O $ and hence we conclude that $ T^*N \cdot T^*O = T^*G^2 = T^*F_1 \cdot T^*F_2 $ $ \Longrightarrow $ $ O, N, F_1, F_2 $ are concyclic. $ \qquad \blacksquare $

Comment

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54632
  • Total comments: 5
Search Blog
a