New approach to Liang-Zelich Theorem

by TelvCohl, May 27, 2021, 10:22 AM

In this short post, I present a new proof to a result of Ivan Zelich and Xuming Liang [1].

Preliminaries

Sondat's theorem : Given two perspective and orthologic triangles $ \triangle A_1B_1C_1 $ and $ \triangle A_2B_2C_2 $ such that the perpendicular from $ A_1, B_1, C_1 $ to $ B_2C_2, C_2A_2, A_2B_2, $ resp. are concurrent at $ X_1 $ and the perpendicular from $ A_2, B_2, C_2 $ to $ B_1C_1, C_1A_1, A_1B_1, $ resp. are concurrent at $ X_2. $ Then their perspector $ P $ lies on $ X_1X_2 $ and the circum-rectangular hyperbola $ \mathcal{H}_1, \mathcal{H}_2 $ of $ \triangle A_1B_1C_1, \triangle A_2B_2C_2 $ passing through $ X_1, X_2, $ respectively.

Proof : Note that the second part is a particular case of a well-known result, so it suffices to prove that $ P \in X_1X_2. $ Let $ D_1\in\mathcal{H}_1 $ be the orthocenter of $ \triangle B_1X_1C_1, $ then $ D_1B_1 \parallel A_2B_2, D_1C_1 \parallel A_2C_2 $ $ \Longrightarrow $ $ A_1D_1 $ is parallel to the tangent of $ \mathcal{H}_2 $ at $ A_2, $ so $$ P(A_1, X_1; B_1, C_1) =  D_1(A_1, X_1; B_1, C_1) = A_2(A_2, X_2; B_2, C_2) = P(A_2, X_2; B_2, C_2) \Longrightarrow P\in X_1X_2\ . \qquad \blacksquare $$
Lemma : Given a $ \triangle ABC $ and a pair $ \left (P, Q \right ) $ of isogonal conjugate WRT $ \triangle ABC. $ Let $ I, I_a, I_b, I_c $ be the incenter, A-excenter, B-excenter, C-excenter of $ \triangle ABC, $ resp. and let $ \mathcal{H} $ be a conic passing through $ I, I_a, I_b, I_c. $ Then $ Q $ lies on the polar of $ P $ WRT $ \mathcal{H}. $

Proof : Let $ U_a, V_a, U_b, V_b, U_c, V_c $ be the intersection of $ PQ $ with $ II_a, I_bI_c, II_b, I_cI_a, II_c, I_aI_b, $ respectively, then $$ (P, Q; U_a, V_a) = (P, Q; U_b, V_b) = (P, Q; U_c, V_c) = -1\ , $$so by Desargues involution theorem we know that the involution on $ PQ $ induced by the pencil of conics passing through $ I, I_a, I_b, I_c $ coincide with harmonic conjugate WRT $ P, Q. $ If $ U, V $ are the intersection of $ PQ $ with $ \mathcal{H}, $ then from the discussion above we get $ (P,Q;U,V) = -1 $ and hence $ Q $ lies on the polar of $ P $ WRT $ \mathcal{H}. $ $ \qquad  \blacksquare $

Main result

Theorem : Given a $ \triangle ABC $ with circumcenter $ O $ and orthocenter $ H. $ Let $ (P, Q) $ be a pair of isogonal conjugate of $ \triangle ABC $ such that $ \{ P, Q \} \neq \{ O, H \} $ and let $ T $ be the intersection of $ PQ, OH. $ For $ t \in \mathbb{R} \cup  \{ \infty  \}, $ denote $ \triangle P_a^{t}P_b^{t}P_c^{t} $ as the image of the pedal triangle of $ P $ WRT $ \triangle ABC $ under the homothety $ (P, t). $ Then $ \triangle ABC $ and $ \triangle P_a^{t}P_b^{t}P_c^{t} $ are perspective if and only if $ t \in \left \{ 0\ ,\  \frac{2\ TO}{TH}\ ,\ \infty \right \}, $ where $ \frac{2\ TO}{TH} $ is undefined when $ T \equiv H. $

Proof :

Claim. If $ T \notin \{ O, H \}, $ then $ \triangle ABC $ and $ \triangle P_a^{t}P_b^{t}P_c^{t} $ are perspective for $ t = \frac{2\ TO}{TH}. $

Proof. Let $ S $ be the pole of $ OP $ WRT the circum-rectangular hyperbola $ \mathcal{H}_{P} $ of the excentral triangle of $ \triangle ABC $ passing through $ P $ and let $ V $ be the intersection of $ AS $ with $ PP_{a}^{1}, $ then it suffices to prove that $ \frac{PV}{PP_a^{1}} = \frac{2\ TO}{TH}. $ Let $ W, X, Y, Z $ be the intersection of $ OP $ with $ AH, HS, AS, BC, $ respectively. By Lemma we know that $ S \in PQ $ and $ SO, SP, SX, SY $ is the polar of $ X, P, O, Z $ WRT $ \mathcal{H}_{P}, $ respectively, so $  (Z,X;O,P) = (Y,O;X,P) $ and hence $$ \frac{AH}{2\ PP_a^{1}} = -\frac{OP}{XP} \cdot \frac{XY}{PY}\ . $$On the other hand, by Menelaus' theorem for $ \left ( \triangle XOH,  \overline{TSP}  \right ) $ and $ \left ( \triangle HXW, \overline{SYA} \right ) $ we get $ \frac{TO}{TH} = - \frac{SX}{HS} \cdot \frac{OP}{XP} $ and $ \frac{SX}{HS} = - \frac{WA}{AH} \cdot \frac{XY}{YW} , $ so $$  \frac{PV}{2\ PP_a^{1}} = \frac{PV}{AH}\ \cdot\ \frac{AH}{2\ PP_a^{1}} = \left (  \frac{WA}{AH} \cdot \frac{YP}{YW} \right ) \cdot \left ( -\frac{OP}{XP} \cdot \frac{XY}{PY} \right ) = \frac{TO}{TH}\ . \qquad \square$$
If $ AP_a^{t}, BP_b^{t}, CP_c^{t} $ are concurrent for some $ t \in \mathbb{R} \setminus  \left \{ 0 \right \}, $ then by Sondat's theorem we know that their perspector lies on $ PQ $ and the circum-rectangular hyperbola of $ \triangle ABC $ passing through $ Q, $ so from Claim. we conclude that $ \triangle ABC $ and $ \triangle P_a^{t}P_b^{t}P_c^{t} $ are perspective if and only if $ t \in \left \{ 0\ ,\  \frac{2\ TO}{TH}\ ,\ \infty \right \}. \qquad  \blacksquare $

Bibliography

[1] $ \qquad \qquad $ Ivan Zelich and Xuming Liang, GENERALISATIONS OF THE PROPERTIES OF THE NEUBERG CUBIC TO THE EULER PENCIL OF ISOPIVOTAL CUBICS, INTERNATIONAL JOURNAL OF GEOMETRY Vol. 4 (2015), No. 2, 5 - 25.
This post has been edited 1 time. Last edited by TelvCohl, May 28, 2021, 1:30 AM

Comment

J
U VIEW ATTACHMENTS T PREVIEW J CLOSE PREVIEW rREFRESH
J

0 Comments

Tags
About Owner
  • Posts: 2312
  • Joined: Oct 8, 2014
Blog Stats
  • Blog created: Jun 15, 2016
  • Total entries: 26
  • Total visits: 54568
  • Total comments: 5
Search Blog
a