Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Divisibilty...
Sadigly   0
31 minutes ago
Source: Azerbaijan Junior NMO 2025 P2
Find all $4$ consecutive even numbers, such that the square of their product divides the sum of their squares.
0 replies
Sadigly
31 minutes ago
0 replies
Quadratic system
juckter   35
N an hour ago by shendrew7
Source: Mexico National Olympiad 2011 Problem 3
Let $n$ be a positive integer. Find all real solutions $(a_1, a_2, \dots, a_n)$ to the system:

\[a_1^2 + a_1 - 1 = a_2\]\[ a_2^2 + a_2 - 1 = a_3\]\[\hspace*{3.3em} \vdots \]\[a_{n}^2 + a_n - 1 = a_1\]
35 replies
juckter
Jun 22, 2014
shendrew7
an hour ago
IMO Shortlist 2012, Geometry 3
lyukhson   75
N 2 hours ago by numbertheory97
Source: IMO Shortlist 2012, Geometry 3
In an acute triangle $ABC$ the points $D,E$ and $F$ are the feet of the altitudes through $A,B$ and $C$ respectively. The incenters of the triangles $AEF$ and $BDF$ are $I_1$ and $I_2$ respectively; the circumcenters of the triangles $ACI_1$ and $BCI_2$ are $O_1$ and $O_2$ respectively. Prove that $I_1I_2$ and $O_1O_2$ are parallel.
75 replies
lyukhson
Jul 29, 2013
numbertheory97
2 hours ago
Diophantine
TheUltimate123   31
N 2 hours ago by SomeonecoolLovesMaths
Source: CJMO 2023/1 (https://aops.com/community/c594864h3031323p27271877)
Find all triples of positive integers \((a,b,p)\) with \(p\) prime and \[a^p+b^p=p!.\]
Proposed by IndoMathXdZ
31 replies
TheUltimate123
Mar 29, 2023
SomeonecoolLovesMaths
2 hours ago
2012 preRMO p17, roots of equation x^3 + 3x + 5 = 0
parmenides51   11
N Today at 3:29 PM by Pengu14
Let $x_1,x_2,x_3$ be the roots of the equation $x^3 + 3x + 5 = 0$. What is the value of the expression
$\left( x_1+\frac{1}{x_1} \right)\left( x_2+\frac{1}{x_2} \right)\left( x_3+\frac{1}{x_3} \right)$ ?
11 replies
parmenides51
Jun 17, 2019
Pengu14
Today at 3:29 PM
Interesting question from Al-Khwarezmi olympiad 2024 P3, day1
Adventure1000   3
N Today at 2:38 PM by sqing
Find all $x, y, z \in \left (0, \frac{1}{2}\right )$ such that
$$
\begin{cases}
(3 x^{2}+y^{2}) \sqrt{1-4 z^{2}} \geq z; \\
(3 y^{2}+z^{2}) \sqrt{1-4 x^{2}} \geq x; \\
(3 z^{2}+x^{2}) \sqrt{1-4 y^{2}} \geq y.
\end{cases}
$$Proposed by Ngo Van Trang, Vietnam
3 replies
Adventure1000
May 7, 2025
sqing
Today at 2:38 PM
Malaysia MO IDM UiTM 2025
smartvong   1
N Today at 2:20 PM by jasperE3
MO IDM UiTM 2025 (Category C)

Contest Description

Preliminary Round
Section A
1. Given that $2^a + 2^b = 2016$ such that $a, b \in \mathbb{N}$. Find the value of $a$ and $b$.

2. Find the value of $a, b$ and $c$ such that $$\frac{ab}{a + b} = 1, \frac{bc}{b + c} = 2, \frac{ca}{c + a} = 3.$$
3. If the value of $x + \dfrac{1}{x}$ is $\sqrt{3}$, then find the value of
$$x^{1000} + \frac{1}{x^{1000}}$$.

Section B
1. Let $\mathbb{Z}$ be the set of integers. Determine all functions $f : \mathbb{Z} \to \mathbb{Z}$ such that for all integer $a, b$:
$$f(2a) + 2f(b) = f(f(a + b))$$
2. The side lengths $a, b, c$ of a triangle $\triangle ABC$ are positive integers. Let
$$T_n = (a + b + c)^{2n} - (a - b + c)^{2n} - (a + b - c)^{2n} - (a - b - c)^{2n}$$for any positive integer $n$.
If $\dfrac{T_2}{2T_1} = 2023$ and $a > b > c$, determine all possible perimeters of the triangle $\triangle ABC$.

Final Round
Section A
1. Given that the equation $x^2 + (b - 3)x - 2b^2 + 6b - 4 = 0$ has two roots, where one is twice of the other, find all possible values of $b$.

2. Let $$f(y) = \dfrac{y^2}{y^2 + 1}.$$Find the value of $$f\left(\frac{1}{2001}\right) + f\left(\frac{2}{2001}\right) + \cdots + f\left(\frac{2000}{2001}\right) + f\left(\frac{2001}{2001}\right) + f\left(\frac{2001}{2000}\right) + \cdots + f\left(\frac{2001}{2}\right) + f\left(\frac{2001}{1}\right).$$
3. Find the smallest four-digit positive integer $L$ such that $\sqrt{3\sqrt{L}}$ is an integer.

Section B
1. Given that $\tan A : \tan B : \tan C$ is $1 : 2 : 3$ in triangle $\triangle ABC$, find the ratio of the side length $AC$ to the side length $AB$.

2. Prove that $\cos{\frac{2\pi}{5}} + \cos{\frac{4\pi}{5}} = -\dfrac{1}{2}.$
1 reply
smartvong
Today at 1:01 PM
jasperE3
Today at 2:20 PM
Nice problem
gasgous   2
N Today at 1:47 PM by vincentwant
Given that the product of three integers is $60$.What is the least possible positive sum of the three integers?
2 replies
gasgous
Today at 1:30 PM
vincentwant
Today at 1:47 PM
Angle Formed by Points on the Sides of a Triangle
xeroxia   1
N Today at 1:28 PM by vanstraelen

In triangle $ABC$, points $D$, $E$, and $F$ lie on sides $BC$, $CA$, and $AB$, respectively, such that
$BD = 20$, $DC = 15$, $CE = 13$, $EA = 8$, $AF = 6$, $FB = 22$.

What is the measure of $\angle EDF$?


1 reply
xeroxia
Today at 10:28 AM
vanstraelen
Today at 1:28 PM
Inequalities
sqing   1
N Today at 1:08 PM by sqing
Let $ a,b,c\geq 0 , (a+8)(b+c)=9.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{38}{23}$$Let $ a,b,c\geq 0 , (a+2)(b+c)=3.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2(2\sqrt{3}+1)}{5}$$
1 reply
sqing
Today at 12:50 PM
sqing
Today at 1:08 PM
Is this true?
Entrepreneur   1
N Today at 12:56 PM by revol_ufiaw
Define the $\text{\textcolor{red}{Pell Sequence}}$ as $$P_0=0,P_1=1,\;P_{n+2}=2P_{n+1}+P_n.$$Prove that $4P_{2k}^2+1$ is prime for all $k\in\mathbb N.$
1 reply
Entrepreneur
Today at 9:32 AM
revol_ufiaw
Today at 12:56 PM
Geometry
AlexCenteno2007   4
N Today at 12:05 PM by Raul_S_Baz
Let ABC be an acute triangle and let D, E and F be the feet of the altitudes from A, B and C respectively. The straight line EF and the circumcircle of ABC intersect at P such that F is between E and P, the straight lines BP and DF intersect at Q. Show that if ED = EP then CQ and DP are parallel.
4 replies
AlexCenteno2007
Apr 28, 2025
Raul_S_Baz
Today at 12:05 PM
Inequalities
sqing   1
N Today at 11:45 AM by sqing
Let $ 0\leq x,y,z\leq 2. $ Prove that
$$-48\leq (x-yz)( 3y-zx)(z-xy)\leq 9$$$$-144\leq (3x-yz)(y-zx)(3z-xy)\leq\frac{81}{64}$$$$-144\leq (3x-yz)(2y-zx)(3z-xy)\leq\frac{81}{16}$$
1 reply
sqing
Yesterday at 8:50 AM
sqing
Today at 11:45 AM
Concurrent in a pyramid
vanstraelen   0
Today at 7:13 AM

Given a pyramid $(T,ABCD)$ where $ABCD$ is a parallelogram.
The intersection of the diagonals of the base is point $S$.
Point $A$ is connected to the midpoint of $[CT]$, point $B$ to the midpoint of $[DT]$,
point $C$ to the midpoint of $[AT]$ and point $D$ to the midpoint of $[BT]$.
a) Prove: the four lines are concurrent in a point $P$.
b) Calulate $\frac{TS}{TP}$.
0 replies
vanstraelen
Today at 7:13 AM
0 replies
Find maximum area of right triangle
jl_   1
N Apr 23, 2025 by navier3072
Source: Malaysia IMONST 2 2023 (Primary) P4
Given a right-angled triangle with hypothenuse $2024$, find the maximal area of the triangle.
1 reply
jl_
Apr 23, 2025
navier3072
Apr 23, 2025
Find maximum area of right triangle
G H J
G H BBookmark kLocked kLocked NReply
Source: Malaysia IMONST 2 2023 (Primary) P4
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jl_
9 posts
#1
Y by
Given a right-angled triangle with hypothenuse $2024$, find the maximal area of the triangle.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
navier3072
115 posts
#2
Y by
$a^2+b^2=2024^2$, so minimum area is $\frac{1}{2} ab \leq \frac{a^2+b^2}{4}=1012^2=(1000+12)^2=1000000+24000+144=1024144$
Z K Y
N Quick Reply
G
H
=
a