Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
China Northern MO 2009 p4 CNMO
parkjungmin   1
N an hour ago by WallyWalrus
Source: China Northern MO 2009 p4 CNMO P4
The problem is too difficult.
1 reply
parkjungmin
Apr 30, 2025
WallyWalrus
an hour ago
Polynomial Squares
zacchro   26
N an hour ago by Mathandski
Source: USA December TST for IMO 2017, Problem 3, by Alison Miller
Let $P, Q \in \mathbb{R}[x]$ be relatively prime nonconstant polynomials. Show that there can be at most three real numbers $\lambda$ such that $P + \lambda Q$ is the square of a polynomial.

Alison Miller
26 replies
zacchro
Dec 11, 2016
Mathandski
an hour ago
Mmo 9-10 graders P5
Bet667   8
N an hour ago by User141208
Let $a,b,c,d$ be real numbers less than 2.Then prove that $\frac{a^3}{b^2+4}+\frac{b^3}{c^2+4}+\frac{c^3}{d^2+4}+\frac{d^3}{a^2+4}\le4$
8 replies
Bet667
Apr 3, 2025
User141208
an hour ago
Tangent to two circles
Mamadi   1
N an hour ago by ricarlos
Source: Own
Two circles \( w_1 \) and \( w_2 \) intersect each other at \( M \) and \( N \). The common tangent to two circles nearer to \( M \) touch \( w_1 \) and \( w_2 \) at \( A \) and \( B \) respectively. Let \( C \) and \( D \) be the reflection of \( A \) and \( B \) respectively with respect to \( M \). The circumcircle of the triangle \( DCM \) intersect circles \( w_1 \) and \( w_2 \) respectively at points \( E \) and \( F \) (both distinct from \( M \)). Show that the line \( EF \) is the second tangent to \( w_1 \) and \( w_2 \).
1 reply
Mamadi
Today at 7:01 AM
ricarlos
an hour ago
China Northern MO 2009 p4 CNMO
parkjungmin   2
N an hour ago by WallyWalrus
Source: China Northern MO 2009 p4 CNMO
China Northern MO 2009 p4 CNMO

The problem is too difficult.
Is there anyone who can help me?
2 replies
parkjungmin
Apr 30, 2025
WallyWalrus
an hour ago
Problem 4
codyj   86
N an hour ago by Mathgloggers
Source: IMO 2015 #4
Triangle $ABC$ has circumcircle $\Omega$ and circumcenter $O$. A circle $\Gamma$ with center $A$ intersects the segment $BC$ at points $D$ and $E$, such that $B$, $D$, $E$, and $C$ are all different and lie on line $BC$ in this order. Let $F$ and $G$ be the points of intersection of $\Gamma$ and $\Omega$, such that $A$, $F$, $B$, $C$, and $G$ lie on $\Omega$ in this order. Let $K$ be the second point of intersection of the circumcircle of triangle $BDF$ and the segment $AB$. Let $L$ be the second point of intersection of the circumcircle of triangle $CGE$ and the segment $CA$.

Suppose that the lines $FK$ and $GL$ are different and intersect at the point $X$. Prove that $X$ lies on the line $AO$.

Proposed by Greece
86 replies
codyj
Jul 11, 2015
Mathgloggers
an hour ago
Israeli Mathematical Olympiad 1995
YanYau   24
N an hour ago by bjump
Source: Israeli Mathematical Olympiad 1995
Let $PQ$ be the diameter of semicircle $H$. Circle $O$ is internally tangent to $H$ and tangent to $PQ$ at $C$. Let $A$ be a point on $H$ and $B$ a point on $PQ$ such that $AB\perp PQ$ and is tangent to $O$. Prove that $AC$ bisects $\angle PAB$
24 replies
YanYau
Apr 8, 2016
bjump
an hour ago
P(x), integer, integer roots, P(0) =-1,P(3) = 128
parmenides51   3
N an hour ago by Rohit-2006
Source: Nordic Mathematical Contest 1989 #1
Find a polynomial $P$ of lowest possible degree such that
(a) $P$ has integer coefficients,
(b) all roots of $P$ are integers,
(c) $P(0) = -1$,
(d) $P(3) = 128$.
3 replies
parmenides51
Oct 5, 2017
Rohit-2006
an hour ago
2017 CGMO P1
smy2012   9
N an hour ago by Bardia7003
Source: 2017 CGMO P1
(1) Find all positive integer $n$ such that for any odd integer $a$, we have $4\mid a^n-1$
(2) Find all positive integer $n$ such that for any odd integer $a$, we have $2^{2017}\mid a^n-1$
9 replies
smy2012
Aug 13, 2017
Bardia7003
an hour ago
Euler's function
luutrongphuc   1
N 2 hours ago by luutrongphuc
Find all real numbers \(\alpha\) such that for every positive real \(c\), there exists an integer \(n>1\) satisfying
\[
\frac{\varphi(n!)}{n^\alpha\,(n-1)!} \;>\; c.
\]
1 reply
luutrongphuc
2 hours ago
luutrongphuc
2 hours ago
a