Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Advanced topics in Inequalities
va2010   18
N an hour ago by sqing
So a while ago, I compiled some tricks on inequalities. You are welcome to post solutions below!
18 replies
va2010
Mar 7, 2015
sqing
an hour ago
two subsets with no fewer than four common elements.
micliva   39
N an hour ago by de-Kirschbaum
Source: All-Russian Olympiad 1996, Grade 9, First Day, Problem 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.

A. Skopenkov
39 replies
micliva
Apr 18, 2013
de-Kirschbaum
an hour ago
3 knightlike moves is enough
sarjinius   2
N an hour ago by cooljoseph
Source: Philippine Mathematical Olympiad 2025 P6
An ant is on the Cartesian plane. In a single move, the ant selects a positive integer $k$, then either travels [list]
[*] $k$ units vertically (up or down) and $2k$ units horizontally (left or right); or
[*] $k$ units horizontally (left or right) and $2k$ units vertically (up or down).
[/list]
Thus, for any $k$, the ant can choose to go to one of eight possible points.
Prove that, for any integers $a$ and $b$, the ant can travel from $(0, 0)$ to $(a, b)$ using at most $3$ moves.
2 replies
sarjinius
Mar 9, 2025
cooljoseph
an hour ago
16th ibmo - uruguay 2001/q3.
carlosbr   21
N an hour ago by de-Kirschbaum
Source: Spanish Communities
Let $S$ be a set of $n$ elements and $S_1,\ S_2,\dots,\ S_k$ are subsets of $S$ ($k\geq2$), such that every one of them has at least $r$ elements.

Show that there exists $i$ and $j$, with $1\leq{i}<j\leq{k}$, such that the number of common elements of $S_i$ and $S_j$ is greater or equal to: $r-\frac{nk}{4(k-1)}$
21 replies
carlosbr
Apr 15, 2006
de-Kirschbaum
an hour ago
Weird Geo
Anto0110   1
N an hour ago by cooljoseph
In a trapezium $ABCD$, the sides $AB$ and $CD$ are parallel and the angles $\angle ABC$ and $\angle BAD$ are acute. Show that it is possible to divide the triangle $ABC$ into 4 disjoint triangle $X_1. . . , X_4$ and the triangle $ABD$ into 4 disjoint triangles $Y_1,. . . , Y_4$ such that the triangles $X_i$ and $Y_i$ are congruent for all $i$.
1 reply
Anto0110
Yesterday at 9:24 PM
cooljoseph
an hour ago
Hard FE R^+
DNCT1   5
N 3 hours ago by jasperE3
Find all functions $f:\mathbb{R^+}\to\mathbb{R^+}$ such that
$$f(3x+f(x)+y)=f(4x)+f(y)\quad\forall x,y\in\mathbb{R^+}$$
5 replies
DNCT1
Dec 30, 2020
jasperE3
3 hours ago
Maximum of Incenter-triangle
mpcnotnpc   4
N 3 hours ago by mpcnotnpc
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
4 replies
mpcnotnpc
Mar 25, 2025
mpcnotnpc
3 hours ago
Something nice
KhuongTrang   26
N 3 hours ago by KhuongTrang
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
26 replies
1 viewing
KhuongTrang
Nov 1, 2023
KhuongTrang
3 hours ago
Tiling rectangle with smaller rectangles.
MarkBcc168   59
N 4 hours ago by Bonime
Source: IMO Shortlist 2017 C1
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.

Proposed by Jeck Lim, Singapore
59 replies
MarkBcc168
Jul 10, 2018
Bonime
4 hours ago
Existence of AP of interesting integers
DVDthe1st   34
N 4 hours ago by DeathIsAwe
Source: 2018 China TST Day 1 Q2
A number $n$ is interesting if 2018 divides $d(n)$ (the number of positive divisors of $n$). Determine all positive integers $k$ such that there exists an infinite arithmetic progression with common difference $k$ whose terms are all interesting.
34 replies
DVDthe1st
Jan 2, 2018
DeathIsAwe
4 hours ago
a