We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
IMO ShortList 1998, algebra problem 3
orl   69
N 13 minutes ago by Marcus_Zhang
Source: IMO ShortList 1998, algebra problem 3
Let $x,y$ and $z$ be positive real numbers such that $xyz=1$. Prove that


\[
 \frac{x^{3}}{(1 + y)(1 + z)}+\frac{y^{3}}{(1 + z)(1 + x)}+\frac{z^{3}}{(1 + x)(1 + y)}
 \geq \frac{3}{4}. 
\]
69 replies
orl
Oct 22, 2004
Marcus_Zhang
13 minutes ago
IMO ShortList 2001, algebra problem 6
orl   137
N 35 minutes ago by Levieee
Source: IMO ShortList 2001, algebra problem 6
Prove that for all positive real numbers $a,b,c$, \[ \frac{a}{\sqrt{a^2 + 8bc}} + \frac{b}{\sqrt{b^2 + 8ca}} + \frac{c}{\sqrt{c^2 + 8ab}} \geq 1.  \]
137 replies
2 viewing
orl
Sep 30, 2004
Levieee
35 minutes ago
9 Three concurrent chords
v_Enhance   1
N an hour ago by YaoAOPS
Three distinct circles $\Omega_1$, $\Omega_2$, $\Omega_3$ cut three common chords concurrent at $X$. Consider two distinct circles $\Gamma_1$, $\Gamma_2$ which are internally tangent to all $\Omega_i$. Determine, with proof, which of the following two statements is true.

(1) $X$ is the insimilicenter of $\Gamma_1$ and $\Gamma_2$
(2) $X$ is the exsimilicenter of $\Gamma_1$ and $\Gamma_2$.
1 reply
+2 w
v_Enhance
an hour ago
YaoAOPS
an hour ago
Simple vector geometry existence
AndreiVila   3
N 2 hours ago by Ianis
Source: Romanian District Olympiad 2025 9.1
Let $ABCD$ be a parallelogram of center $O$. Prove that for any point $M\in (AB)$, there exist unique points $N\in (OC)$ and $P\in (OD)$ such that $O$ is the center of mass of $\triangle MNP$.
3 replies
AndreiVila
Mar 8, 2025
Ianis
2 hours ago
BD tangent to (MDE) , rhombus ABCD with <DCB=60^o
parmenides51   1
N 2 hours ago by vanstraelen
Source: 2021 Germany R4 10.6 https://artofproblemsolving.com/community/c3208025_
Let a rhombus $ABCD$ with $|\angle DCB| = 60^o$ be given . On the extension of the segment $\overline{CD}$ beyond $D$, a point $E$ is chosen arbitrarily. Let the line through $E$ and $A$ intersect the line $BC$ at the point $F$. Let $M$ be the intersection of the lines $BE$ and $DF$. Prove that the line $BD$ is tangent to the circumcircle of the triangle $MDE$.
1 reply
parmenides51
Oct 6, 2024
vanstraelen
2 hours ago
Geometry Problem #42
vankhea   2
N 3 hours ago by kaede_Arcadia
Source: Van Khea
Let $P$ be any point. Let $D, E, F$ be projection point from $P$ to $BC, CA, AB$. Circumcircle $(ABC)$ cuts circumcircle $(AEF), (BFD), (CDE)$ at $A_1, B_1, C_1$. Let $A_2, B_2, C_2$ be antipode of $A_1, B_1, C_1$ wrt $(AEF), (BFD), (CDE)$. Prove that $A_2, B_2, C_2, P$ are cyclic.
2 replies
vankhea
Sep 6, 2023
kaede_Arcadia
3 hours ago
divisibility
srnjbr   3
N 3 hours ago by srnjbr
Find all natural numbers n such that there exists a natural number l such that for every m members of the natural numbers the number m+m^2+...m^l is divisible by n.
3 replies
srnjbr
5 hours ago
srnjbr
3 hours ago
Very easy inequality
pggp   5
N 3 hours ago by ionbursuc
Source: Polish Junior MO Second Round 2019
Let $x$, $y$ be real numbers, such that $x^2 + x \leq y$. Prove that $y^2 + y \geq x$.
5 replies
pggp
Oct 26, 2020
ionbursuc
3 hours ago
Solve in gaussian integers
CHESSR1DER   0
3 hours ago
Solve in gaussian integers.
$
\sin\left(\ln\left(x^{x^{x^2}}\right)\right) = x^4
$
0 replies
1 viewing
CHESSR1DER
3 hours ago
0 replies
Inequality and function
srnjbr   4
N 3 hours ago by srnjbr
Find all f:R--R such that for all x,y, yf(x)+f(y)>=f(xy)
4 replies
srnjbr
5 hours ago
srnjbr
3 hours ago
Problem 4
blug   3
N 3 hours ago by sunken rock
Source: Polish Junior Math Olympiad Finals 2025
In a rhombus $ABCD$, angle $\angle ABC=100^{\circ}$. Point $P$ lies on $CD$ such that $\angle PBC=20^{\circ}$. Line parallel to $AD$ passing trough $P$ intersects $AC$ at $Q$. Prove that $BP=AQ$.
3 replies
blug
Mar 15, 2025
sunken rock
3 hours ago
CMI Entrance 19#6
bubu_2001   5
N 4 hours ago by quasar_lord
$(a)$ Compute -
\begin{align*}
\frac{\mathrm{d}}{\mathrm{d}x} \bigg[ \int_{0}^{e^x} \log ( t ) \cos^4 ( t ) \mathrm{d}t \bigg]
\end{align*}$(b)$ For $x > 0 $ define $F ( x ) = \int_{1}^{x} t \log ( t ) \mathrm{d}t . $

$1.$ Determine the open interval(s) (if any) where $F ( x )$ is decreasing and all the open interval(s) (if any) where $F ( x )$ is increasing.

$2.$ Determine all the local minima of $F ( x )$ (if any) and all the local maxima of $F ( x )$ (if any) $.$
5 replies
bubu_2001
Nov 1, 2019
quasar_lord
4 hours ago
Very interesting inequality
sqing   0
Mar 19, 2025
Source: Own
Let $ a,b,c\geq 2  . $ Prove that
$$(a-1)(b^2-2)(c^3-3)-  \frac{5}{2}abc\geq -10$$$$(a-\frac{3}{2})(b^2-2)(c^3-3)-  \frac{5}{2}abc\geq -15$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-3)-  \frac{25}{8}abc\geq - \frac{155}{8}$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-3)- 3abc\geq - \frac{363}{20}$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-\frac{5}{2})- \frac{55}{16}abc\geq - \frac{341}{16}$$
0 replies
sqing
Mar 19, 2025
0 replies
Very interesting inequality
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41157 posts
#1
Y by
Let $ a,b,c\geq 2  . $ Prove that
$$(a-1)(b^2-2)(c^3-3)-  \frac{5}{2}abc\geq -10$$$$(a-\frac{3}{2})(b^2-2)(c^3-3)-  \frac{5}{2}abc\geq -15$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-3)-  \frac{25}{8}abc\geq - \frac{155}{8}$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-3)- 3abc\geq - \frac{363}{20}$$$$(a-\frac{3}{2})(b^2-\frac{3}{2})(c^3-\frac{5}{2})- \frac{55}{16}abc\geq - \frac{341}{16}$$
Z K Y
N Quick Reply
G
H
=
a