Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Is this even algebra or geometry
Sadigly   3
N a few seconds ago by Moon_settler
Source: Azerbaijan Junior NMO 2019
Alice creates the graphs $y=|x-a|$ and $y=c-|x-b|$ , where $a,b,c\in\mathbb{R^+}$. She observes that these two graphs and $x$ axis divides the plane into two triangles and a quadrilateral. Find the ratio of sums of two triangles' areas to the area of quadrilateral.
3 replies
Sadigly
9 minutes ago
Moon_settler
a few seconds ago
Inequality involving semiperimeter
Sadigly   0
5 minutes ago
Source: Azerbaijan Junior NMO 2019
Prove that, for any triangle with side lengths $a,b,c$, the following inequality holds $$\frac{a}{(b+c)^2}+\frac{b}{(c+a)^2}+\frac{c}{(a+b)^2}\geq\frac9{8p}$$($p$ denotes the semiperimeter of a triangle)
0 replies
Sadigly
5 minutes ago
0 replies
Prove or disprove the existence of such a
Sadigly   0
8 minutes ago
Source: Azerbaijan NMO
A positive number $a$ is given, such that $a$ could be expressed as difference of two perfect squares ($a=\frac1{n^2}-\frac1{m^2}$). Is it possible for $2a$ to be expressed as difference of two perfect squares?
0 replies
Sadigly
8 minutes ago
0 replies
Points on the sides of cyclic quadrilateral satisfy the angle conditions
AlperenINAN   1
N 12 minutes ago by ehuseyinyigit
Source: Turkey JBMO TST 2025 P1
Let $ABCD$ be a cyclic quadrilateral and let the intersection point of lines $AB$ and $CD$ be $E$. Let the points $K$ and $L$ be arbitrary points on sides $CD$ and $AB$ respectively, which satisfy the conditions
$$\angle KAD = \angle KBC \quad \text{and} \quad \angle LDA = \angle LCB.$$Prove that $EK = EL$.
1 reply
AlperenINAN
an hour ago
ehuseyinyigit
12 minutes ago
Writing quadratic trinomials inside cells
Sadigly   0
16 minutes ago
Source: Azerbaijan Junior NMO 2019
A $6\times6$ square is given, and a quadratic trinomial with a positive leading coefficient is placed in each of its cells. There are $108$ coefficents in total, and these coefficents are chosen from the set $[-66;47]$, and each coefficient is different from each other. Prove that there exists at least one column such that the sum of the six trinomials in that column has a real root.
0 replies
Sadigly
16 minutes ago
0 replies
Product of consecutive terms divisible by a prime number
BR1F1SZ   1
N 17 minutes ago by IndoMathXdZ
Source: 2025 Francophone MO Seniors P4
Determine all sequences of strictly positive integers $a_1, a_2, a_3, \ldots$ satisfying the following two conditions:
[list]
[*]There exists an integer $M > 0$ such that, for all indices $n \geqslant 1$, $0 < a_n \leqslant M$.
[*]For any prime number $p$ and for any index $n \geqslant 1$, the number
\[
a_n a_{n+1} \cdots a_{n+p-1} - a_{n+p}
\]is a multiple of $p$.
[/list]


1 reply
1 viewing
BR1F1SZ
Today at 12:09 AM
IndoMathXdZ
17 minutes ago
Shortest number theory you might've seen in your life
AlperenINAN   1
N 20 minutes ago by idd
Source: Turkey JBMO TST 2025 P4
Let $p$ and $q$ be prime numbers. Prove that if $pq(p+1)(q+1)$ is a perfect square, then $pq + 1$ is also a perfect square.
1 reply
AlperenINAN
39 minutes ago
idd
20 minutes ago
Minimum value of a 3 variable expression
bin_sherlo   3
N 21 minutes ago by ehuseyinyigit
Source: Türkiye 2025 JBMO TST P6
Find the minimum value of
\[\frac{x^3+1}{(y-1)(z+1)}+\frac{y^3+1}{(z-1)(x+1)}+\frac{z^3+1}{(x-1)(y+1)}\]where $x,y,z>1$ are reals.
3 replies
bin_sherlo
an hour ago
ehuseyinyigit
21 minutes ago
Incenter is the foot of altitude
Sadigly   0
40 minutes ago
Source: Azerbaijan JBMO TST 2023
Let $ABC$ be a triangle and let $\Omega$ denote the circumcircle of $ABC$. The foot of altitude from $A$ to $BC$ is $D$. The foot of altitudes from $D$ to $AB$ and $AC$ are $K;L$ , respectively. Let $KL$ intersect $\Omega$ at $X;Y$, and let $AD$ intersect $\Omega$ at $Z$. Prove that $D$ is the incenter of triangle $XYZ$
0 replies
Sadigly
40 minutes ago
0 replies
System of equations in juniors' exam
AlperenINAN   1
N 42 minutes ago by AlperenINAN
Source: Turkey JBMO TST 2025 P3
Find all positive real solutions $(a, b, c)$ to the following system:
$$
\begin{aligned}
a^2 + \frac{b}{a} &= 8, \\
ab + c^2 &= 18, \\
3a + b + c &= 9\sqrt{3}.
\end{aligned}
$$
1 reply
AlperenINAN
an hour ago
AlperenINAN
42 minutes ago
reals associated with 1024 points
bin_sherlo   0
an hour ago
Source: Türkiye 2025 JBMO TST P8
Pairwise distinct points $P_1,\dots,P_{1024}$, which lie on a circle, are marked by distinct reals $a_1,\dots,a_{1024}$. Let $P_i$ be $Q-$good for a $Q$ on the circle different than $P_1,\dots,P_{1024}$, if and only if $a_i$ is the greatest number on at least one of the two arcs $P_iQ$. Let the score of $Q$ be the number of $Q-$good points on the circle. Determine the greatest $k$ such that regardless of the values of $a_1,\dots,a_{1024}$, there exists a point $Q$ with score at least $k$.
0 replies
bin_sherlo
an hour ago
0 replies
n + k are composites for all nice numbers n, when n+1, 8n+1 both squares
parmenides51   3
N an hour ago by Nuran2010
Source: 2022 Saudi Arabia JBMO TST 1.1
The positive $n > 3$ called ‘nice’ if and only if $n +1$ and $8n + 1$ are both perfect squares. How many positive integers $k \le 15$ such that $4n + k$ are composites for all nice numbers $n$?
3 replies
parmenides51
Nov 3, 2022
Nuran2010
an hour ago
Divisibility NT
reni_wee   2
N an hour ago by reni_wee
Source: Iran 1998
Suppose that $a$ and $b$ are natural numbers such that
$$p = \frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}$$is a prime number. Find all possible values of $a$,$b$,$p$.
2 replies
reni_wee
Today at 5:11 AM
reni_wee
an hour ago
Aslı tries to make the amount of stones at every unit square is equal
AlperenINAN   0
an hour ago
Source: Turkey JBMO TST 2025 P2
Let $n$ be a positive integer. Aslı and Zehra are playing a game on an $n\times n$ grid. Initially, $10n^2$ stones are placed on some of the unit squares of this grid.

On each move (starting with Aslı), Aslı chooses a row or a column that contains at least two squares with different numbers of stones, and Zehra redistributes the stones in that row or column so that after redistribution, the difference in the number of stones between any two squares in that row or column is at most one. Furthermore, this move must change the number of stones in at least one square.

For which values of $n$, regardless of the initial placement of the stones, can Aslı guarantee that every square ends up with the same number of stones?
0 replies
AlperenINAN
an hour ago
0 replies
NT from ukr contest
mshtand1   2
N Feb 11, 2024 by Assassino9931
Source: Ukrainian TST for RMM 2021(2) and EGMO 2022 P2
Find the greatest positive integer $n$ such that there exist positive integers $a_1, a_2, ..., a_n$ for which the following holds $a_{k+2} = \dfrac{(a_{k+1}+a_k)(a_{k+1}+1)}{a_k}$ for all $1 \le k \le n-2$.
Proposed by Mykhailo Shtandenko and Oleksii Masalitin
2 replies
mshtand1
Oct 2, 2021
Assassino9931
Feb 11, 2024
NT from ukr contest
G H J
G H BBookmark kLocked kLocked NReply
Source: Ukrainian TST for RMM 2021(2) and EGMO 2022 P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mshtand1
85 posts
#1
Y by
Find the greatest positive integer $n$ such that there exist positive integers $a_1, a_2, ..., a_n$ for which the following holds $a_{k+2} = \dfrac{(a_{k+1}+a_k)(a_{k+1}+1)}{a_k}$ for all $1 \le k \le n-2$.
Proposed by Mykhailo Shtandenko and Oleksii Masalitin
This post has been edited 1 time. Last edited by mshtand1, Oct 2, 2021, 10:08 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RevolveWithMe101
482 posts
#2
Y by
Bumping this.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1343 posts
#3
Y by
Don't have time to try now but what if this is Vieta jumping simlar to IMO Shortlist 2009 N4?
Z K Y
N Quick Reply
G
H
=
a