ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
If a,b,c are positive real numbers, such that a+b+c=1. Prove that:
(b+c)(a+c)/(a+b)+ (b+a)(a+c)/(c+b)+(b+c)(a+b)/(a+c)>= Sqrt.(6(a(a+c)+b(a+b)+c(b+c)) +3
Let be a triangle with circumcircle . Arbitrary points on respectively. Circumcircle of triangle intersects at . intersects at . cuts and at respectively. Construct parallelogram . Prove that are collinear.
Let denote the set of natural numbers and let denote ordered pairs in . Prove that there exist distinct elements in the set for whose product is a perfect cube.
Let the polynomial have real roots and real coefficients with . What is the maximum value of ?
This is a problem I made for my math competition, and I wanted to see if someone would double-check my work (No Mike allowed):
solution
We need to maximize because we know , then . Let have roots . Observe that . Obscure, yes, but this means (I won't be proving this here). This new information allows us to utilize the mean inequality chain as follows:
By QM-AM, Similarly, applying AM-HM yields . Thus, .
p1. Compute the smallest positive integer such that is a perfect cube.
p2. A four digit integer is chosen at random. What is the probability all digits are distinct?
p3. If Solve for .
p4. In ,,, and . Let be the point on such that , and let be the midpoint of . If is a point such that is a rectangle, compute the area of .
p5. Square has a sidelength of . Points ,,, and are chosen on ,,, and respectively, such that ,,, and are length . Compute the area of quadrilateral .
p6. A sequence satisfies for all integers ,If and , compute .
p7. In a class, every child has either red hair, blond hair, or black hair. All but children have black hair, all but have red hair, and all but have blond hair. How many children are there in the class?
p8. An Akash set is a set of integers that does not contain two integers such that one divides the other. Compute the minimum positive integer such that the set can be partitioned into n Akash subsets.
PS. You should use hide for answers. Collected here.
Triangle ABC with incenter I, incircle is tangent to BC, AC, and AB at D, E and F respectively.
DT is a diameter for the incircle, and AT meets the incircle again at point H.
Let DH and EF intersect at point J. Prove: AJ//BC.
gives for some . gives or
If there is some such that
Then = or
If at some point we get = then taking gives contradiction.
So -constant for big enough values, so which is not possible.
Otherwise when for all .
Doing induction gives for natural numbers
Which gives contradiction when trying natural values for and gives contradiction.
So there exist no functions.
Edit: After seeing @down solution i saw that the constant solution worked.
This post has been edited 2 times. Last edited by Haris1, May 1, 2025, 3:09 PM
The answer is for all . It’s easy to see that these functions satisfy the given equation. We now show these are the only solutions. Let be the assertion that for real numbers and .
Since the range of is the positive integers the Well-Ordering principle states that there exists a real number such that for all . But then, yields, However, which since the range of is the positive integers implies that we must have in and further, that for all which immediately allows us to conclude that for all real numbers as desired.