Join our FREE webinar on May 1st to learn about managing anxiety.

G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
Apr 2, 2025
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers
[*]April 22nd (Webinar), 4:00pm PT/7:00pm ET, Competitive Programming at AoPS (USACO).[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Apr 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Do not try to case bash lol
ItzsleepyXD   3
N 12 minutes ago by reni_wee
Source: Own , Mock Thailand Mathematic Olympiad P3
Let $n,d\geqslant 6$ be a positive integer such that $d\mid 6^{n!}+1$ .
Prove that $d>2n+6$ .
3 replies
ItzsleepyXD
Yesterday at 9:08 AM
reni_wee
12 minutes ago
The product of two p-pods is a p-pod
MellowMelon   10
N 16 minutes ago by Mathandski
Source: USA TST 2011 P3
Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a $p$-pod if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum
\[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\]
Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.
10 replies
MellowMelon
Jul 26, 2011
Mathandski
16 minutes ago
Nordic squares!
mathisreaI   36
N 20 minutes ago by awesomehuman
Source: IMO 2022 Problem 6
Let $n$ be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from $1$ to $n^2$ so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a valley. An uphill path is a sequence of one or more cells such that:

(i) the first cell in the sequence is a valley,

(ii) each subsequent cell in the sequence is adjacent to the previous cell, and

(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of $n$, the smallest possible total number of uphill paths in a Nordic square.

Author: Nikola Petrović
36 replies
mathisreaI
Jul 13, 2022
awesomehuman
20 minutes ago
Monochromatic bipartite subgraphs
L567   4
N 27 minutes ago by ihategeo_1969
Source: STEMS Mathematics 2023 Category B P6
For a positive integer $n$, let $f(n)$ denote the largest integer such that for any coloring of a $K_{n,n}$ with two colors, there exists a monochromatic subgraph of $K_{n,n}$ isomorphic to $K_{f(n), f(n)}$. Is it true that for each positive integer $m$ we can find a natural $N$ such that for any integer $n \geqslant N$, $f(n) \geqslant m$?

Proposed by Suchir
4 replies
L567
Jan 8, 2023
ihategeo_1969
27 minutes ago
Tilted Students Thoroughly Splash Tiger part 2
DottedCaculator   18
N an hour ago by MathLuis
Source: ELMO 2024/5
In triangle $ABC$ with $AB<AC$ and $AB+AC=2BC$, let $M$ be the midpoint of $\overline{BC}$. Choose point $P$ on the extension of $\overline{BA}$ past $A$ and point $Q$ on segment $\overline{AC}$ such that $M$ lies on $\overline{PQ}$. Let $X$ be on the opposite side of $\overline{AB}$ from $C$ such that $\overline{AX} \parallel \overline{BC}$ and $AX=AP=AQ$. Let $\overline{BX}$ intersect the circumcircle of $BMQ$ again at $Y \neq B$, and let $\overline{CX}$ intersect the circumcircle of $CMP$ again at $Z \neq C$. Prove that $A$, $Y$, and $Z$ are collinear.

Tiger Zhang
18 replies
DottedCaculator
Jun 21, 2024
MathLuis
an hour ago
Find area!
ComplexPhi   4
N an hour ago by TigerOnion
Let $O_1$ be a point in the exterior of the circle $\omega$ of center $O$ and radius $R$ , and let $O_1N$ , $O_1D$ be the tangent segments from $O_1$ to the circle. On the segment $O_1N$ consider the point $B$ such that $BN=R$ .Let the line from $B$ parallel to $ON$ intersect the segment $O_1D$ at $C$ . If $A$ is a point on the segment $O_1D$ other than $C$ so that $BC=BA=a$ , and if the incircle of the triangle $ABC$ has radius $r$ , then find the area of $\triangle ABC$ in terms of $a ,R ,r$.
4 replies
ComplexPhi
Feb 4, 2015
TigerOnion
an hour ago
Easy integer functional equation
MarkBcc168   93
N an hour ago by ray66
Source: APMO 2019 P1
Let $\mathbb{Z}^+$ be the set of positive integers. Determine all functions $f : \mathbb{Z}^+\to\mathbb{Z}^+$ such that $a^2+f(a)f(b)$ is divisible by $f(a)+b$ for all positive integers $a,b$.
93 replies
MarkBcc168
Jun 11, 2019
ray66
an hour ago
-2 belongs to S
WakeUp   3
N an hour ago by Burmf
Source: Baltic Way 1996 Q12
Let $S$ be a set of integers containing the numbers $0$ and $1996$. Suppose further that any integer root of any non-zero polynomial with coefficients in $S$ also belongs to $S$. Prove that $-2$ belongs to $S$.
3 replies
WakeUp
Mar 19, 2011
Burmf
an hour ago
Short combi omg
Davdav1232   5
N 2 hours ago by fagot
Source: Israel TST 2025 test 4 p3
Let \( n \) be a positive integer. A graph on \( 2n - 1 \) vertices is given such that the size of the largest clique in the graph is \( n \). Prove that there exists a vertex that is present in every clique of size \( n\)
5 replies
Davdav1232
Feb 3, 2025
fagot
2 hours ago
Isi 2016 geometry
zizou10   22
N 2 hours ago by kamatadu
Source: ISI BSTAT 2016 #5
Prove that there exists a right angle triangle with rational sides and area $d$ if and only if $x^2,y^2$ and $z^2$ are squares of rational numbers and are in Arithmetic Progression

Here $d$ is an integer.
22 replies
zizou10
May 8, 2016
kamatadu
2 hours ago
If ab+1 is divisible by A then so is a+b
ravengsd   3
N 2 hours ago by trigadd123
Source: Romania EGMO TST 2025 Day 2, Problem 4
Find the greatest positive integer $A$ such that, for all positive integers $a$ and $b$, if $A$ divides $ab+1$, then $A$ divides $a+b$.
3 replies
ravengsd
6 hours ago
trigadd123
2 hours ago
IMO Shortlist 2012, Geometry 2
lyukhson   88
N 2 hours ago by zuat.e
Source: IMO Shortlist 2012, Geometry 2
Let $ABCD$ be a cyclic quadrilateral whose diagonals $AC$ and $BD$ meet at $E$. The extensions of the sides $AD$ and $BC$ beyond $A$ and $B$ meet at $F$. Let $G$ be the point such that $ECGD$ is a parallelogram, and let $H$ be the image of $E$ under reflection in $AD$. Prove that $D,H,F,G$ are concyclic.
88 replies
lyukhson
Jul 29, 2013
zuat.e
2 hours ago
Trivial fun Equilateral
ItzsleepyXD   5
N 2 hours ago by reni_wee
Source: Own , Mock Thailand Mathematic Olympiad P1
Let $ABC$ be a scalene triangle with point $P$ and $Q$ on the plane such that $\triangle BPC , \triangle CQB$ is an equilateral . Let $AB$ intersect $CP$ and $CQ$ at $X$ and $Z$ respectively and $AC$ intersect $BP$ and $BQ$ at $Y$ and $W$ respectively .
Prove that $XY\parallel ZW$
5 replies
ItzsleepyXD
Yesterday at 9:05 AM
reni_wee
2 hours ago
Geometry..Pls
Jackson0423   2
N 2 hours ago by Royal_mhyasd
In equilateral triangle \( ABC \), let \( AB = 10 \). Point \( D \) lies on segment \( BC \) such that \( BC = 4 \cdot DC \). Let \( O \) and \( I \) be the circumcenter and incenter of triangle \( ABD \), respectively. Let \( O' \) and \( I' \) be the circumcenter and incenter of triangle \( ACD \), respectively. Suppose that lines \( OI \) and \( O'I' \) intersect at point \( X \). Find the length of \( XD \).
2 replies
Jackson0423
5 hours ago
Royal_mhyasd
2 hours ago
Find all functions
WakeUp   21
N Yesterday at 3:11 AM by CrazyInMath
Source: Baltic Way 2010
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]
for all $x,y\in\mathbb{R}$.
21 replies
WakeUp
Nov 19, 2010
CrazyInMath
Yesterday at 3:11 AM
Find all functions
G H J
G H BBookmark kLocked kLocked NReply
Source: Baltic Way 2010
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WakeUp
1347 posts
#1 • 4 Y
Y by jhu08, Adventure10, Mango247, and 1 other user
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]
for all $x,y\in\mathbb{R}$.
This post has been edited 1 time. Last edited by WakeUp, Nov 19, 2010, 8:18 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pco
23508 posts
#2 • 7 Y
Y by Abdollahpour, jhu08, Adventure10, Mango247, and 3 other users
WakeUp wrote:
Let $R$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]
for all $x,y\in\mathbb{R}$.
Let $P(x,y)$ be the assertion $f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)$

$P(0,x)$ $\implies$ $f(0)(f(x)+x-2)$

If $f(0)\ne 0$, this implies $f(x)=2-x$ which indeed is a solution.

Let us from know consider that $f(0)=0$

$P(x,0)$ $\implies$ $f(x^2)=xf(x)$
Then : $P(x,y)$ $\implies$ $xf(x)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)$
Same : $P(y,x)$ $\implies$ $yf(y)+f(xy)=f(x)f((y)+xf(y)+yf(x+y)$
Subtracting implies $(x-y)f(x+y)-f(x)-f(y))=0$

and so $f(x+y)=f(x)+f(y)$ $\forall x\ne y$

Plugging this in $xf(x)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)$, we get $f(xy)=f(x)f(y)+yf(x)+xf(y)$ $\forall x\ne y$

$\iff$ $f(xy)+xy=(f(x)+x)(f(y)+y)$

Let then $g(x)=f(x)+x$. We got :
$g(0)=0$
$g(x+y)=g(x)+g(y)$ $\forall x\ne y$
$g(xy)=g(x)g(y)$ $\forall x\ne y$

From the first, we get $g(-x)=-g(x)$ and so $g(2x+(-x))=g(2x)+g(-x)$ and so $g(2x)=2g(x)$ and so $g(x+y)=g(x)+g(y)$ $\forall x,y$
From the second, we get $g(x(x+1))=g(x)g(x+1)=g(x)^2+g(x)$
But also $g(x(x+1))=g(x^2+x)=g(x^2)+g(x)$
And so $g(x^2)=g(x)^2$ and so $g(xy)=g(x)g(y)$ $\forall x,y$

So :
$g(x+y)=g(x)+g(y)$ $\forall x,y$
$g(xy)=g(x)g(y)$ $\forall x,y$
And so, very classical, $g(x)=x$ and $f(x)=0$

Hence the two solutions :
$f(x)=2-x$
$f(x)=0$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WakeUp
1347 posts
#3 • 3 Y
Y by jhu08, Adventure10, Mango247
pco wrote:
From the second, we get $g(x(x+1))=g(x)g(x+1)=g(x)^2+g(x)$
But also $g(x(x+1))=g(x^2+x)=g(x^2)+g(x)$
And so $g(x^2)=g(x)^2$ and so $g(xy)=g(x)g(y)$ $\forall x,y$

Hi pco, could you please explain this part of the solution? Note also $f(x)=-x$ is a solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Solving
185 posts
#4 • 3 Y
Y by jhu08, Adventure10, Mango247
SO im right?

x=y
2f(x^2)=f(x)^2+x(f(x)+f(2x))
2f(0)=f(0)^2
f(0)=0
or
f(0)=1/2
let x=x, y=0
f(x^2)+f(0)=f(x)f(0)+xf(x)
f(0)=1/2
f(x^2)+1/2=f(x)(1/2+x)
f(x)=ax+b
ax^2+b+1/2=(ax/2+ax^2+b/2+bx)
b/2=b+1/2
b=-1
a=2
f(x)=2x-1 is the solution
for
f(0)=0
f(x)=x
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
pco
23508 posts
#5 • 3 Y
Y by jhu08, Adventure10, Mango247
WakeUp wrote:
pco wrote:
From the second, we get $g(x(x+1))=g(x)g(x+1)=g(x)^2+g(x)$
But also $g(x(x+1))=g(x^2+x)=g(x^2)+g(x)$
And so $g(x^2)=g(x)^2$ and so $g(xy)=g(x)g(y)$ $\forall x,y$

Hi pco, could you please explain this part of the solution?
Yes, :oops:, I wrote too quickly !
First we can see that $g(x)=0$ is a solution (and so $f(x)=-x$ is indeed !
If $g(x)$ is not the all zero function, let then $u$ such that $g(u)\ne 0$. If $u=1$, choose instead $u=-1$.
Then the second equation gives us $g(u)(g(1)-1)=0$ and so $g(1)=1$

Then $g(x(x+1))=g(x)g(x+1)$ (using second equation since $x\ne x+1$) $=g(x)(g(x)+g(1))=g(x)^2+g(x)$
But $g(x(x+1))=g(x^2+x)=g(x^2)+g(x)$
And so, $g(x^2)=g(x)^2$ and so the second equation $g(xy)=g(x)g(y)$ is also true if $x=y$
...

WakeUp wrote:
Note also $f(x)=-x$ is a solution.
Yes, :oops: $g(x)=0$ is also a solution (I forgot it)

And so :
$f(x)=0$
$f(x)=-x$
$f(x)=2-x$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
borntobeweild
331 posts
#6 • 4 Y
Y by Jerry37284, jhu08, Adventure10, Mango247
This is just about as interesting as a FE can get while still dying to the standard strategies of plugging stuff in, taking cases, and testing. Nevertheless, it was a fun problem.

Reading this won't teach you anything except for what tricks you should have tried
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Onlygodcanjudgeme
18 posts
#7 • 3 Y
Y by jhu08, EHHSW, Adventure10
put $ (x,y) = (0,0) $ then we take that 1) $ f(0) =0 $ 2)$ f(0) =2 $
1) put $ (x,y) = (x,0) $ then we take that $ f(x^2) = x \cdot f(x) $ and this is odd function .
put $ (x,y) = (x,-x) $ then we take that f(-x) = x , f(x) =0
2)put $ (x,y) = (0,x) $ then we take that f(x) = 2-x
so answer is f(x)=0 , f(x) = -x ,f(x) = 2-x
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jerry37284
46 posts
#8 • 3 Y
Y by jhu08, Adventure10, Mango247
@Onlygodcanjudgeme :I think you got "$\forall x$ : either $f(x)=0$, either $f(x)=-x$" and not "either $f(x)=0$ $\forall x$ , either $f(x)=-x$ $\forall x$ "
This post has been edited 1 time. Last edited by Jerry37284, Dec 10, 2018, 3:34 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Keith50
464 posts
#9 • 3 Y
Y by jhu08, Mango247, Mango247
Let $P(x,y)$ be the given assertion, $P(0,0)\implies 2f(0)=f(0)^2\implies f(0)=0,2$.
If $f(0)=2$, then $P(0,x)\implies 4=2f(x)+2x\implies f(x)=2-x \ \ \forall x\in\mathbb{R}$.
So, if $f(0)=0,$ $P(x,0)\implies f(x^2)=xf(x) \ \ \ (1)$
$P(x,-x)\implies f(x^2)+f(-x^2)=f(x)f(-x)-xf(x) \ \ \ (2)$
Using $P(x,y)$ and $P(-x,-y)$, we can arrive at \[f(x)f(y)+yf(x)+xf(x+y)=f(-x)f(-y)-yf(-x)-xf(-x-y),\]letting $y=0$, we get $f(x)=-f(-x)$ where $x\ne0$, so $f$ is odd.
From $(2)$, using the fact that $f$ is odd, \[f(x)(f(x)+x)=0\implies f(x)=0,-x.\]Now, assume that there exists $a,b\in \mathbb{R}, a,b\ne 0$ such that $f(a)=0$ and $f(b)=-b$, using $(1)$, $f(a^2)=0, f(b^2)=-b^2$,
using $P(a,b)$ we get \[f(ab)=af(a+b).\]If $f(ab)=-ab$, \[-b=f(a+b).\]If $f(a+b)=0$, then $b=0$, a contradiction.
If $f(a+b)=-(a+b)$, then $a=0$, a contradiction. Thus, when $f(ab)=0$, $f(a+b)=0$ as $a=0$ is a contradiction.
Take $P(a,b)$ and $P(b,a)$, subtracting one from another gives \[f(a^2)-f(b^2)=bf(a)+af(a+b)-af(b)-bf(a+b)\]which simplifies to \[b^2=ab\implies b(a-b)=0\]and so $a=b$ since $b\ne 0$ but this means $f(b)=f(a)=0=-b$, a contradiction.
Hence, we have \[f(x)\equiv 0, 2-x, -x\]as solutions and plugging them into the equation, we see that they indeed satisfy. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kimchiks926
256 posts
#10 • 2 Y
Y by mkomisarova, jhu08
Solved together with @blastoor
Let $P(x,y)$ denote assertion of given functional equation.

Note that $P(0,0)$ gives us $2f(0) = f(0)^2$, which means that $f(0)=0$ or $f(0)=2$. If $f(0) =2$, then $P(0,x)$ gives us:
\begin{align*} 
 f(0) + f(0) = f(0)f(x) + xf(0) \\
4 = 2f(x) + 2x \\
f(x) = 2 -x 
\end{align*}It is easy to check that function $f(x) =2-x$ works.

From now we assume that $f(0) =0$. Note that $P(x,0)$ gives us:
$$ f(x^2) = xf(x) \qquad (1) $$In relation $(1)$ replacing $x$ by $-x$ yields:
$$ f(x^2) = xf(x) = -xf(-x) \implies -f(x) = f(-x) $$Also note that $P(x,-x)$ gives us:
\begin{align*}
f(x^2) + f(-x^2) = f(x)f(-x) -xf(x) \\
f(x^2) -f(x^2) = -f(x)^2 - xf(x) \\ 
f(x)^2 = -xf(x) 
\end{align*}We conclude that $f(x) = 0$ or $f(x) =-x$. Now we are left to escape pointwise trap. Assume that there exist nonzero real numbers $a, b$ such that $f(a) =-a$ and $f(b) = 0 $. Note that $f(b^2) = bf(b) = 0$ and that $P(b,a-b)$ gives us:
\begin{align*} 
f(b^2) +f(b(a-b))= f(b)f(a-b) + (a-b)f(b) + bf(a) \\ 
f(b(a-b)) = -ab 
\end{align*}If $f(b(a-b)) = b^2 -ab$, then $b^2 =0 $, which is contradiction since $b \ne 0$. On another hand id $f(b(a-b)=0=ab$, then one of the numbers $a,b$ is zero, which is again contradiction.

We conclude that $f(x)=0$, $f(x) = 2 -x$, $f(x) =-x$ are only solutions.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
508669
1040 posts
#11 • 1 Y
Y by jhu08
WakeUp wrote:
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]for all $x,y\in\mathbb{R}$.

Let $P(x, y)$ be the assertion. We claim that all solutions to the given functional equation are of form $\boxed{f(x) = 2-x}$ for reals $x$, $\boxed{f(x) = -x}$ for all reals $x$ and $\boxed{f(x) = 0}$ for all reals $x$. It is not hard to see they work. Now we show that these are the only such functions.

We see that $P(x, 0) \implies f(0)(f(x) + x - 2) = 0$, so if $f(0) \neq 0$, then $\boxed{f(x) = 2-x}$ which is indeed a solution.

Otherwise, let $f(0) = 0 \dots (1)$. Then by $P(x, 0)$, we yield that $f(x^2) = xf(x) = -xf(-x)$ (by replacing $x$ by $-x$) and so $f$ is odd function. Now $P(x, y) - P(y, x)$ along with $f(x^2) = xf(x)$ gives that $(x-y)(f(x+y)-f(x)-f(y)) = 0$ and so if $x \neq y$, definitely $f(x+y) = f(x) + f(y)$ and so $f$ is additive. Now, we re-arrange few terms in $P(x, y)$.

$P(x, y) \implies f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y) \implies xf(x) + yf(x) = f(x)f(y) + yf(x) + xf(x) + xf(y) \implies 0 = f(x)f(y) + xf(y) = f(y)(f(x) + x)$ which means that $f(x) = -x$ or $f(x) = 0$ for all reals $x$.

Let us say that $A = \{ x \lvert f(x) = -x, x \neq 0 \}$ and $A = \{ x \lvert f(x) = 0, x \neq 0 \}$. Let $a \in A, b \in B$. We see that $f(ab) = bf(a) + af(b)$, and so here in this case, $f(ab) = b \times -a = a \times 0 = 0$, so either of $a$ or $b$ is $0$, a contradiction to definition of elements belonging to sets $A$ and $B$. Hence, $\lvert A \rvert = 0$ or $\lvert B \rvert = 0$. We see that $f(0) = 0 = -0$. Therefore, we see that all solutions to the given functional equation are of form $\boxed{f(x) = 2-x}$ for reals $x$, $\boxed{f(x) = -x}$ for all positive reals $x$ and $\boxed{f(x) = 0}$ for all reals $x$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11281 posts
#13 • 1 Y
Y by jhu08
Hint

Let $P(x,y)$ be the assertion $f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)$
$P(0,0)\Rightarrow 2f(0)=f(0)^2$
If $f(0)=2$ then:
$P(0,x)\Rightarrow\boxed{f(x)=2-x}$, which works.
Now assume $f(0)=0$.
$P(x,0)\Rightarrow f(x^2)=xf(x)$
$P(1,x)\Rightarrow f(x+1)=f(x)+f(1)-f(x)f(1)-xf(1)$
We use this recurrence to find $f(1)$.
$P(1,1)\Rightarrow f(2)=f(1)-f(1)^2$
$P(1,2)\Rightarrow f(3)=f(2)-f(1)-f(2)f(1)=f(1)^3-2f(1)^2$
$P(1,3)\Rightarrow f(4)=f(3)-2f(1)-f(3)f(1)=-f(1)^4+3f(1)^3-2f(1)^2-2f(1)$
But $f(4)=2f(2)=2f(1)-2f(1)^2$, so we find that $2f(1)-2f(1)^2=-f(1)^4+3f(1)^3-2f(1)^2-2f(1)$. Solving, we have $f(1)\in\{-1,0,2\}$.

$\textbf{Case 1: }f(1)=0$
$P(1,x)\Rightarrow f(x)=f(x+1)$
$P\left(x,\frac yx+1\right)-P\left(x,\frac yx\right)\Rightarrow f(x+y)=f(x)+f(y)$ if $x\ne0$, but since it holds for $x=0$, $f$ is additive.
By USAMO 2002/4, since $f(x^2)=xf(x)$ and $f$ is additive, we must have $f(x)=xf(1)$, hence $\boxed{f(x)=0}$ which works.

$\textbf{Case 2: }f(1)=-1$
$P(1,x)\Rightarrow f(x+1)=2f(x)+x-1$
$P(x,1)\Rightarrow f(x^2)+f(x)=xf(x+1)\Rightarrow xf(x)+f(x)=2xf(x)+x^2-x\Rightarrow\boxed{f(x)=-x}$ since $f(1)=-1$, which works.

$\textbf{Case 3: }f(1)=2$
$P(1,x)\Rightarrow f(x+1)=-f(x)-2x+2$
$P(x,1)\Rightarrow(x-1)f(x)=-x^2+x\Rightarrow f(x)=\begin{cases}-x&\text{if }x\ne1\\2&\text{if }x=1\end{cases}$ which doesn't work.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RopuToran
609 posts
#14 • 1 Y
Y by jhu08
Here is my way to solve the first case where $f(0)=0$ :D
$P(x,0)$ gives us $$f(x^2) = xf(x),  \forall x \quad (1)$$$P(y,x)$ gives us $$f(y^2) + f(xy)= f(x)f(y)+xf(y)+yf(x+y),  \forall x,y \quad (2)$$By pluging (1) into (2) then subtracting (2) and the original FE, we got $$(x-y) (f(x)+f(y)) = (x-y) f(x+y), \forall x,y$$, which implies $$ f(x) + f(y) = f(x+y), \forall x \neq y \quad (3)$$From $(1)$, we also have $f(x^2)= -x f(x)$ which leads to $$f(x)= f(-x), \forall x \quad (4)$$By $P(x,-x)$ and using $(4)$, we got $$f(x)^2 = -xf(x), \forall x (5)$$Using $(1)$ and $(3)$, from the origina FE, we have $$f(xy) = f(x)f(y)+xf(y) + yf(x), \forall x \neq y$$, which equivalent to $$ f(x)(f(y)+y) = f(xy) - xf(y), \forall x \neq y \quad (6)$$Case 1: There is a number $k \neq 0$ such that $f(k) = -k$. In $(6)$, let $y=k$, we have $f(kx)=-kx, \forall x \neq k$. Thus $f(x) = -x, \forall x \neq k^2$. In the other hand, $f(k^2) = kf(k) = -k^2$. So, $f(x)=-x, \forall x$.
Case 2: There is no number $k$ other than $0$ such that $f(k) = -k$, which means $f(x) \neq -x, \forall x \neq 0$. With $(5)$, we implies $f(x) = 0, \forall x \neq 0$. In the otherhand, $f(0)=0$, thus $f(x) = 0$.

P/S
This post has been edited 1 time. Last edited by RopuToran, Aug 8, 2021, 4:38 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathLuis
1520 posts
#15 • 1 Y
Y by jhu08
WakeUp wrote:
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]for all $x,y\in\mathbb{R}$.

Case 1: $f$ is constant.
We will set $f(x)=c$ where $c$ is some real constant. Plugging this on the F.E. we get:
$$2c=c^2+cy+cx \implies c=0 \implies f(x)=0$$Cade 2: $f$ is non-constant.
Let $P(x,y)$ the assertion of the given F.E.
$P(0,0)$
$$f(0)^2=2f(0) \implies f(0)=0 \; \text{or} \; f(0)=2$$Case 2.1: $f(0)=2$
$P(0,x)$
$$4=2f(x)+2x \implies f(x)=2-x$$Case 2.2: $f(0)=0$
$P(x,0)$
$$f(x^2)=xf(x) \implies f \; \text{odd}$$$P(x,-x)$ where $x$ is any non-cero real
$$f(x)^2+xf(x)=0 \implies f(x)=-x$$Since $f(0)=0$ we have that $f(x)=-x \; \forall x \in \mathbb R$
Thus the solutions are:

$\boxed{f(x)=0 \; \forall x \in \mathbb R}$

$\boxed{f(x)=2-x \; \forall x \in \mathbb R}$

$\boxed{f(x)=-x \; \forall x \in \mathbb R}$

Thus we are done :blush:
This post has been edited 1 time. Last edited by MathLuis, Aug 8, 2021, 6:26 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rama1728
800 posts
#16 • 1 Y
Y by jhu08
WakeUp wrote:
Let $\mathbb{R}$ denote the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that
\[f(x^2)+f(xy)=f(x)f(y)+yf(x)+xf(x+y)\]for all $x,y\in\mathbb{R}$.

A good problem for oddness of a function and how to tackle pointwise traps. Other steps are natural.

Solution
This post has been edited 3 times. Last edited by rama1728, Aug 8, 2021, 7:14 PM
Reason: .
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
JustKeepRunning
2958 posts
#17 • 1 Y
Y by jhu08
A nice exercise for pointwise trap!

The answers are $f\equiv 0, 2-x, -x$. These work.

Denote the assertion by $P(x,y)$. $P(0,0)$ gives that $f(0)=0,2$.

Case 1: $f(0)=2$.

$P(0,y)$ gives that $f(y)=2-y.$

Case 2: $f(0)=0$

$P(x,0)$ gives that $f(x^2)=xf(x),$ so we have that $f$ is odd. Then $P(x,-x)$ gives that $0=f(x)(f(x)+x),$ so $f(x)=0,-x$. To avoid pointwise trap, suppose that $f(x)=0$ and $f(y)=-y$ for some $x,y\neq 0$. Then from $P(x,y)$ and $P(y,x)$ and subtracting, we get that $xf(x)-yf(y)=yf(x)-xf(y)+(x-y)f(x+y)$. Obviously, $x\neq y,$ and simplifying gives that $f(x+y)=f(y)=-y$. If $y=0,$ we are done, and if $x+y=y,$ then $x=0,$ and we are done as well.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RopuToran
609 posts
#18 • 1 Y
Y by jhu08
JustKeepRunning wrote:
Obviously, $x\neq y,$ and simplifying gives that $f(x+y)=f(y)=-y$. If $y=0,$ we are done, and if $x+y=y,$ then $x=0,$ and we are done as well.

How did you simplify the equation into this?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jasperE3
11281 posts
#19 • 1 Y
Y by jhu08
They used the properties $f(x)=0$ and $f(y)=-y$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZETA_in_olympiad
2211 posts
#20
Y by
Let $P(x,y)$ denote the assertion. Quickly $P(0,x)$ gives $f(x)\equiv 2-x$ or $f(0)=0.$ The former works, so we explore the latter.

$P(x,0)$ gives $f(x^2)=xf(x).$ And so comparing $P(x,y)$ with $P(y,x)$ shows that $f(x+y)=f(x)+f(y)$ for all $x\neq y.$ To conclude $P(x,-x)$ implies $f(x)\in \{0,-x\}$ but since additive $f\equiv 0$ or $f\equiv -x$ and both satisfy.
This post has been edited 1 time. Last edited by ZETA_in_olympiad, Aug 1, 2022, 11:08 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
HamstPan38825
8857 posts
#22
Y by
This dies to basically anything.

Setting $x=y=0$ yields $2f(0) = f(0)^2$. If $f(0) = 2$, setting $x=0$ yields $f(x) = 2-x$ immediately.

If $f(0) = 0$, setting $y=0$ yields $f(x^2) = xf(x)$, implying $f$ is odd. Setting $y=-x$ in the original, \[0=f\left(x^2\right) + f\left(-x^2\right) = f(x)f(-x)-xf(x) = -f(x)^2 - xf(x).\]So for each $x$, either $f(x) = 0$ or $f(x) = -x$. There are many ways to resolve the pointwise trap, but here is a really stupid way. By setting $y=x$ we get $f(x)^2 + xf(2x) = xf(x)$, i.e. $xf(2x) = 2xf(x)$ or $f(2x) = f(x)$. Furthermore, by swapping $x$ and $y$, we get \[(x-y)f(x) - xf(x+y)=(y-x)f(y) - yf(x+y)\]so $f(x+y) = f(x)+f(y)$ for all $x \neq y$. Combining this with the previous equation yields that $f$ is Cauchy and bounded below on $x \geq 0$, thus $f$ is linear. We can check that only $f \equiv 0$ works here.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
math-olympiad-clown
27 posts
#23
Y by
case 1. f is a constant function :
c+c=c^2+cy+xc x=y=1 plug in we get c=0
so f(x)=0

case 2. f is not a constant function :
P(0,y) :2f(0)=f(0)f(y)+yf(0)

2-1. if f(0) is not 0 then y=1 plug in we get f(1)=1
P(1,y): 1+f(y)=f(y)+y+f(y+1) and we know that f(y)=2-y

2-2.f(0)=0 : P(0,0): f(x^2)=xf(x) this imply f is a odd function
P(x,-x) : 0=-(f(x)^2)-xf(x) we get f(x)=-x

so the answer is f(x)=0 or 2-x or -x
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
CrazyInMath
457 posts
#24
Y by
$f(x)=0$ works, now assume $f$ is not constant
$P(0,0)$ gives $f(0)=0, 2$

If $f(0)=2$, $P(0, x)$ gives $f(x)=2-x$ which works
If $f(0)=0$, $P(x, 0)$ gives $f(x^2)=xf(x)$ so $f$ is odd
then $P(x, -x)$ gives $-f(x)^2-xf(x)=0$ so $f(x)(f(x)-x)=0$, so $f(x)=-x, 0$.
If $f(a)=0$, $f(b)=-b$, by $P(a, b)$ and $P(b, a)$ we have contradiction.
So $f(x)=-x$ or $f(x)=0$ in this case.
Z K Y
N Quick Reply
G
H
=
a