Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
Yesterday at 11:16 PM
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Yesterday at 11:16 PM
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Hard inequality
ys33   4
N 9 minutes ago by ys33
Let $a, b, c, d>0$. Prove that
$\sqrt[3]{ab}+ \sqrt[3]{cd} < \sqrt[3]{(a+b+c)(b+c+d)}$.
4 replies
ys33
3 hours ago
ys33
9 minutes ago
IMO Shortlist Problems
ABCD1728   0
16 minutes ago
Source: IMO official website
Where can I get the official solution for ISL before 2005? The official website only has solutions after 2006. Thanks :)
0 replies
1 viewing
ABCD1728
16 minutes ago
0 replies
Geometric inequality in quadrilateral
BBNoDollar   0
28 minutes ago
Source: Romanian Mathematical Gazette 2025
Let ABCD be a convex quadrilateral with angles BAD and BCD obtuse, and let the points E, F ∈ BD, such that AE ⊥ BD and CF ⊥ BD.
Prove that 1/(AE*CF) ≥ 1/(AB*BC) + 1/(AD*CD) .
0 replies
BBNoDollar
28 minutes ago
0 replies
A coincidence about triangles with common incenter
flower417477   2
N 43 minutes ago by flower417477
$\triangle ABC,\triangle ADE$ have the same incenter $I$.Prove that $BCDE$ is concyclic iff $BC,DE,AI$ is concurrent
2 replies
+1 w
flower417477
Wednesday at 2:08 PM
flower417477
43 minutes ago
Hojoo Lee problem 73
Leon   24
N an hour ago by mihaig
Source: Belarus 1998
Let $a$, $b$, $c$ be real positive numbers. Show that \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1\]
24 replies
Leon
Aug 21, 2006
mihaig
an hour ago
Function equation
LeDuonggg   5
N an hour ago by luutrongphuc
Find all functions $f: \mathbb{R^+} \rightarrow \mathbb{R^+}$ , such that for all $x,y>0$:
\[ f(x+f(y))=\dfrac{f(x)}{1+f(xy)}\]
5 replies
LeDuonggg
Yesterday at 2:59 PM
luutrongphuc
an hour ago
Consecutive sum of integers sum up to 2020
NicoN9   2
N an hour ago by NicoN9
Source: Japan Junior MO Preliminary 2020 P2
Let $a$ and $b$ be positive integers. Suppose that the sum of integers between $a$ and $b$, including $a$ and $b$, are equal to $2020$.
All among those pairs $(a, b)$, find the pair such that $a$ achieves the minimum.
2 replies
1 viewing
NicoN9
Today at 6:09 AM
NicoN9
an hour ago
Range of a^3+b^3-3c
Kunihiko_Chikaya   1
N an hour ago by Mathzeus1024
Let $a,\ b,\ c$ be real numbers such that $b<\frac{1}{c}<a$ and

$$\begin{cases}a+b+c=1 \ \\ a^2+b^2+c^2=23	

\end{cases}$$
Find the range of $a^3+b^3-3c.$


Proposed by Kunihiko Chikaya/September 23, 2020
1 reply
Kunihiko_Chikaya
Sep 23, 2020
Mathzeus1024
an hour ago
equations
kjhgyuio   1
N an hour ago by mashumaro
........
1 reply
kjhgyuio
an hour ago
mashumaro
an hour ago
powers of 2
ErTeeEs06   3
N an hour ago by GeorgeMetrical123
Source: BxMO 2025 P4
Let $a_0, a_1, \ldots, a_{10}$ be integers such that, for each $i \in \{0,1,\ldots,2047\}$, there exists a subset $S \subseteq \{0,1,\ldots,10\}$ with
\[
\sum_{j \in S} a_j \equiv i \pmod{2048}.
\]Show that for each $i \in \{0,1,\ldots,10\}$, there is exactly one $j \in \{0,1,\ldots,10\}$ such that $a_j$ is divisible by $2^i$ but not by $2^{i+1}$.

Note: $\sum_{j \in S} a_j$ is the summation notation, for instance, $\sum_{j \in \{2,5\}} a_j = a_2 + a_5$, while for the empty set $\varnothing$, one defines $\sum_{j \in \varnothing} a_j = 0$.
3 replies
ErTeeEs06
Apr 26, 2025
GeorgeMetrical123
an hour ago
IMO 2023 P2
799786   92
N an hour ago by L13832
Source: IMO 2023 P2
Let $ABC$ be an acute-angled triangle with $AB < AC$. Let $\Omega$ be the circumcircle of $ABC$. Let $S$ be the midpoint of the arc $CB$ of $\Omega$ containing $A$. The perpendicular from $A$ to $BC$ meets $BS$ at $D$ and meets $\Omega$ again at $E \neq A$. The line through $D$ parallel to $BC$ meets line $BE$ at $L$. Denote the circumcircle of triangle $BDL$ by $\omega$. Let $\omega$ meet $\Omega$ again at $P \neq B$. Prove that the line tangent to $\omega$ at $P$ meets line $BS$ on the internal angle bisector of $\angle BAC$.
92 replies
799786
Jul 8, 2023
L13832
an hour ago
Problem 1 (First Day)
Valentin Vornicu   136
N 2 hours ago by Rayvhs
1. Let $ABC$ be an acute-angled triangle with $AB\neq AC$. The circle with diameter $BC$ intersects the sides $AB$ and $AC$ at $M$ and $N$ respectively. Denote by $O$ the midpoint of the side $BC$. The bisectors of the angles $\angle BAC$ and $\angle MON$ intersect at $R$. Prove that the circumcircles of the triangles $BMR$ and $CNR$ have a common point lying on the side $BC$.
136 replies
Valentin Vornicu
Jul 12, 2004
Rayvhs
2 hours ago
Avoid losing the game
PieAreSquared   17
N 2 hours ago by Mathgloggers
Source: EGMO 2023/4
Turbo the snail sits on a point on a circle with circumference $1$. Given an infinite sequence of positive real numbers $c_1, c_2, c_3, \dots$, Turbo successively crawls distances $c_1, c_2, c_3, \dots$ around the circle, each time choosing to crawl either clockwise or counterclockwise.
Determine the largest constant $C > 0$ with the following property: for every sequence of positive real numbers $c_1, c_2, c_3, \dots$ with $c_i < C$ for all $i$, Turbo can (after studying the sequence) ensure that there is some point on the circle that it will never visit or crawl across.
17 replies
PieAreSquared
Apr 16, 2023
Mathgloggers
2 hours ago
Special line through antipodal
Phorphyrion   10
N 2 hours ago by SimogmH1
Source: 2025 Israel TST Test 1 P2
Triangle $\triangle ABC$ is inscribed in circle $\Omega$. Let $I$ denote its incenter and $I_A$ its $A$-excenter. Let $N$ denote the midpoint of arc $BAC$. Line $NI_A$ meets $\Omega$ a second time at $T$. The perpendicular to $AI$ at $I$ meets sides $AC$ and $AB$ at $E$ and $F$ respectively. The circumcircle of $\triangle BFT$ meets $BI_A$ a second time at $P$, and the circumcircle of $\triangle CET$ meets $CI_A$ a second time at $Q$. Prove that $PQ$ passes through the antipodal to $A$ on $\Omega$.
10 replies
Phorphyrion
Oct 28, 2024
SimogmH1
2 hours ago
Geometry with three circles and angular bisectors
Tintarn   3
N Dec 12, 2023 by SouradipClash_03
Source: Germany 2019, Problem 2
Let $a$ and $b$ be two circles, intersecting in two distinct points $Y$ and $Z$. A circle $k$ touches the circles $a$ and $b$ externally in the points $A$ and $B$.

Show that the angular bisectors of the angles $\angle ZAY$ and $\angle YBZ$ intersect on the line $YZ$.
3 replies
Tintarn
Jun 20, 2019
SouradipClash_03
Dec 12, 2023
Geometry with three circles and angular bisectors
G H J
G H BBookmark kLocked kLocked NReply
Source: Germany 2019, Problem 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Tintarn
9042 posts
#1 • 1 Y
Y by Adventure10
Let $a$ and $b$ be two circles, intersecting in two distinct points $Y$ and $Z$. A circle $k$ touches the circles $a$ and $b$ externally in the points $A$ and $B$.

Show that the angular bisectors of the angles $\angle ZAY$ and $\angle YBZ$ intersect on the line $YZ$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pluto1708
1107 posts
#2 • 4 Y
Y by AlastorMoody, A-Thought-Of-God, Adventure10, Mango247
Easy ;)
Solution
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mogmog8
1080 posts
#3 • 4 Y
Y by centslordm, Mango247, Mango247, Mango247
Same as @above; posting for storage.

By Radical axis, let $X=\overline{AA}\cap\overline{BB}\cap\overline{YZ}.$ Then, $\triangle AXZ\sim\triangle YXA$ and $\triangle BXZ\sim\triangle YXB$ so $$\frac{AY}{AZ}=\frac{AX}{XZ}=\frac{BX}{XZ}=\frac{BY}{BZ}.$$The Angle Bisector Theorem finishes. $\square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
SouradipClash_03
166 posts
#4 • 1 Y
Y by GeoKing
Perform an inversion on $Y$ with any radius.
Circles $a$ and $b$ turn to straight lines $a'$ and $b'$, that intersect on a point $Z'$. Note that $Z'$ lies on $YZ$.
Circle $k$ turn to a circle $k'$ such that its tangent to the lines $a'$ and $b'$, at the points $A'$ and $B'$.
By properties of tangency,
$$\angle A'Z'Y = \angle B'Z'Y$$$$\implies \angle AZY = \angle BZY$$Thus $YZ$ is the angle bisector, and thus the other two angle bisectors will meet at the incenter $I$ of $\triangle AZB$, which lies on the angle bisector $YZ$.
This post has been edited 1 time. Last edited by SouradipClash_03, Dec 12, 2023, 9:08 AM
Z K Y
N Quick Reply
G
H
=
a