Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
ISI UGB 2025 P4
SomeonecoolLovesMaths   4
N a minute ago by Ghoshadi
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
4 replies
SomeonecoolLovesMaths
Yesterday at 11:24 AM
Ghoshadi
a minute ago
The Return of Triangle Geometry
peace09   9
N 30 minutes ago by mathfun07
Source: 2023 ISL A7
Let $N$ be a positive integer. Prove that there exist three permutations $a_1,\dots,a_N$, $b_1,\dots,b_N$, and $c_1,\dots,c_N$ of $1,\dots,N$ such that \[\left|\sqrt{a_k}+\sqrt{b_k}+\sqrt{c_k}-2\sqrt{N}\right|<2023\]for every $k=1,2,\dots,N$.
9 replies
peace09
Jul 17, 2024
mathfun07
30 minutes ago
Set Partition
Butterfly   0
30 minutes ago
For the set of positive integers $\{1,2,…,n\}(n\ge 3)$, no matter how its elements are partitioned into two subsets, at least one of the subsets must contain three numbers $a,b,c$ ($a=b$ is allowed) such that $ab=c$. Find the minimal $n$.
0 replies
Butterfly
30 minutes ago
0 replies
Points Lying on its Cevian Triangle's Thomson Cubic
Feuerbach-Gergonne   1
N an hour ago by golue3120
Source: Own
Given $\triangle ABC$ and a point $P$, let $\triangle DEF$ be the cevian triangle of $P$ with respect to $\triangle ABC$. Let $H$ be the orthocenter of $\triangle ABC$, and denote the isotomic conjugate of $H, P$ with respect to $\triangle ABC$ by $X, Q$, respectively. Let the centroid of $\triangle DEF$ be $M$, and denote the isogonal conjugate of $P$ with respect to $\triangle DEF$ by $R$. Prove that
$$
P, Q, X \text{ are collinear} \iff P, R, M \text{ are collinear}. 
$$or in brief
$$
P \in \text{ K007 of } \triangle ABC \iff P \in \text{ K002 of } \triangle DEF. 
$$
1 reply
+1 w
Feuerbach-Gergonne
Jul 19, 2024
golue3120
an hour ago
Areas of triangles AOH, BOH, COH
Arne   71
N an hour ago by EpicBird08
Source: APMO 2004, Problem 2
Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Prove that the area of one of the triangles $AOH$, $BOH$ and $COH$ is equal to the sum of the areas of the other two.
71 replies
Arne
Mar 23, 2004
EpicBird08
an hour ago
Problem 6
termas   68
N 2 hours ago by HamstPan38825
Source: IMO 2016
There are $n\ge 2$ line segments in the plane such that every two segments cross and no three segments meet at a point. Geoff has to choose an endpoint of each segment and place a frog on it facing the other endpoint. Then he will clap his hands $n-1$ times. Every time he claps,each frog will immediately jump forward to the next intersection point on its segment. Frogs never change the direction of their jumps. Geoff wishes to place the frogs in such a way that no two of them will ever occupy the same intersection point at the same time.

(a) Prove that Geoff can always fulfill his wish if $n$ is odd.

(b) Prove that Geoff can never fulfill his wish if $n$ is even.
68 replies
termas
Jul 12, 2016
HamstPan38825
2 hours ago
2n^2+4n-1 and 3n+4 have common powers
bin_sherlo   2
N 2 hours ago by Assassino9931
Source: Türkiye 2025 JBMO TST P5
Find all positive integers $n$ such that a positive integer power of $2n^2+4n-1$ equals to a positive integer power of $3n+4$.
2 replies
bin_sherlo
Yesterday at 7:13 PM
Assassino9931
2 hours ago
combi/nt
blug   2
N 2 hours ago by aaravdodhia
Prove that every positive integer $n$ can be written in the form
$$n=a_1+a_2+...+a_k,$$where $a_m=2^i3^j$ for some non-negative $i, j$ such that
$$a_x\nmid a_y$$for every $x, y\leq k$.
2 replies
blug
May 9, 2025
aaravdodhia
2 hours ago
System of equations in juniors' exam
AlperenINAN   2
N 2 hours ago by Assassino9931
Source: Turkey JBMO TST 2025 P3
Find all positive real solutions $(a, b, c)$ to the following system:
$$
\begin{aligned}
a^2 + \frac{b}{a} &= 8, \\
ab + c^2 &= 18, \\
3a + b + c &= 9\sqrt{3}.
\end{aligned}
$$
2 replies
1 viewing
AlperenINAN
6 hours ago
Assassino9931
2 hours ago
Trigo relation in a right angled. ISIBS2011P10
Sayan   10
N 2 hours ago by mqoi_KOLA
Show that the triangle whose angles satisfy the equality
\[\frac{\sin^2A+\sin^2B+\sin^2C}{\cos^2A+\cos^2B+\cos^2C} = 2\]
is right angled.
10 replies
Sayan
Mar 31, 2013
mqoi_KOLA
2 hours ago
Triangle is similar to two others
gghx   3
N 2 hours ago by LeYohan
Source: SMO junior 2024 Q2
Let $ABCD$ be a parallelogram and points $E,F$ be on its exterior. If triangles $BCF$ and $DEC$ are similar, i.e. $\triangle BCF \sim \triangle DEC$, prove that triangle $AEF$ is similar to these two triangles.
3 replies
gghx
Oct 12, 2024
LeYohan
2 hours ago
Parallel lines lead to similar triangles
a1267ab   30
N 2 hours ago by Ilikeminecraft
Source: USA TST for EGMO 2020, Problem 2, by Andrew Gu
Let $ABC$ be a triangle and let $P$ be a point not lying on any of the three lines $AB$, $BC$, or $CA$. Distinct points $D$, $E$, and $F$ lie on lines $BC$, $AC$, and $AB$, respectively, such that $\overline{DE}\parallel \overline{CP}$ and $\overline{DF}\parallel \overline{BP}$. Show that there exists a point $Q$ on the circumcircle of $\triangle AEF$ such that $\triangle BAQ$ is similar to $\triangle PAC$.

Andrew Gu
30 replies
a1267ab
Dec 16, 2019
Ilikeminecraft
2 hours ago
Minimum value of a 3 variable expression
bin_sherlo   4
N 2 hours ago by Assassino9931
Source: Türkiye 2025 JBMO TST P6
Find the minimum value of
\[\frac{x^3+1}{(y-1)(z+1)}+\frac{y^3+1}{(z-1)(x+1)}+\frac{z^3+1}{(x-1)(y+1)}\]where $x,y,z>1$ are reals.
4 replies
bin_sherlo
Yesterday at 7:16 PM
Assassino9931
2 hours ago
Circumcircle of ADM
v_Enhance   68
N 3 hours ago by Giant_PT
Source: USA TSTST 2012, Problem 7
Triangle $ABC$ is inscribed in circle $\Omega$. The interior angle bisector of angle $A$ intersects side $BC$ and $\Omega$ at $D$ and $L$ (other than $A$), respectively. Let $M$ be the midpoint of side $BC$. The circumcircle of triangle $ADM$ intersects sides $AB$ and $AC$ again at $Q$ and $P$ (other than $A$), respectively. Let $N$ be the midpoint of segment $PQ$, and let $H$ be the foot of the perpendicular from $L$ to line $ND$. Prove that line $ML$ is tangent to the circumcircle of triangle $HMN$.
68 replies
v_Enhance
Jul 19, 2012
Giant_PT
3 hours ago
Prove angle ADB=3angleBAC if AE=CD
Rama12   1
N Jan 8, 2021 by Inconsistent
Source: KJMO 2019 p2
In an acute triangle $ABC$, point $D$ is on the segment $AC$ such that $\overline{AD}=\overline{BC}$ and $\overline{AC}^2-\overline{AD}^2=\overline{AC}\cdot\overline{AD}$. The line that is parallel to the bisector of $\angle{ACB}$ and passes the point $D$ meets the segment $AB$ at point $E$. Prove, if $\overline{AE}=\overline{CD}$, $\angle{ADB}=3\angle{BAC}$.
1 reply
Rama12
Jan 8, 2021
Inconsistent
Jan 8, 2021
Prove angle ADB=3angleBAC if AE=CD
G H J
G H BBookmark kLocked kLocked NReply
Source: KJMO 2019 p2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rama12
24 posts
#1
Y by
In an acute triangle $ABC$, point $D$ is on the segment $AC$ such that $\overline{AD}=\overline{BC}$ and $\overline{AC}^2-\overline{AD}^2=\overline{AC}\cdot\overline{AD}$. The line that is parallel to the bisector of $\angle{ACB}$ and passes the point $D$ meets the segment $AB$ at point $E$. Prove, if $\overline{AE}=\overline{CD}$, $\angle{ADB}=3\angle{BAC}$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Inconsistent
1455 posts
#2
Y by
WLOG $BC = 1$, then we can use QF to find $AC = \frac{1+\sqrt{5}}{2}$.

$AE = AB \cdot \frac{1}{\frac{1+\sqrt{5}}{2}} \cdot \frac{\frac{1+\sqrt{5}}{2}}{\frac{3+\sqrt{5}}{2}} = CD = \frac{\sqrt{5}-1}{2}$

Thus, $AB = \frac{3+\sqrt{5}}{2} \cdot \frac{\sqrt{5}-1}{2} = \frac{1+\sqrt{5}}{2}$

Thus, $\triangle ABC$ is a 36-72-72 triangle. Thus, $D$ is the foot of the angle bisector from $B$, and $\angle ADB = 108^{\circ}$, $\angle BAC = 36^{\circ}$. We are done.
Z K Y
N Quick Reply
G
H
=
a