Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
max value
Bet667   2
N 14 minutes ago by Natrium
Let $a,b$ be a real numbers such that $a^2+ab+b^2\ge a^3+b^3.$Then find maximum value of $a+b$
2 replies
1 viewing
Bet667
an hour ago
Natrium
14 minutes ago
Inspired by Austria 2025
sqing   2
N 17 minutes ago by Tkn
Source: Own
Let $ a,b\geq 0 ,a,b\neq 1$ and $  a^2+b^2=1. $ Prove that$$   (a + b ) \left( \frac{a}{(b -1)^2} + \frac{b}{(a - 1)^2} \right) \geq 12+8\sqrt 2$$
2 replies
sqing
Today at 2:01 AM
Tkn
17 minutes ago
Geometry
gggzul   2
N 22 minutes ago by gggzul
In trapezoid $ABCD$ segments $AB$ and $CD$ are parallel. Angle bisectors of $\angle A$ and $\angle C$ meet at $P$. Angle bisectors of $\angle B$ and $\angle D$ meet at $Q$. Prove that $ABPQ$ is cyclic
2 replies
gggzul
2 hours ago
gggzul
22 minutes ago
thank you !
Piwbo   2
N 26 minutes ago by Piwbo
Given positive integers $a,b$ such that $a$ is even , $b$ is odd and $ab(a+b)^{2023}$ is divisible by $a^{2024}+b^{2024}$ .Prove that there exists a prime number $p$ such that $a^{2024}+b^{2024}$ is divisible by $p^{2025}$
2 replies
Piwbo
an hour ago
Piwbo
26 minutes ago
geometry
JetFire008   1
N 6 hours ago by ohiorizzler1434
Given four concyclic points. For each subset of three points take the incenter. Show that the four incentres form a rectangle.
1 reply
JetFire008
Yesterday at 4:14 PM
ohiorizzler1434
6 hours ago
A pentagon inscribed in a circle of radius √2
tom-nowy   2
N 6 hours ago by ohiorizzler1434
Can a pentagon with all rational side lengths be inscribed in a circle of radius $\sqrt{2}$ ?
2 replies
tom-nowy
Today at 2:37 AM
ohiorizzler1434
6 hours ago
Inequalities
sqing   8
N Today at 3:12 AM by sqing
Let $ a,b,c>0 $ and $ a+b\leq 16abc. $ Prove that
$$ a+b+kc^3\geq\sqrt[4]{\frac{4k} {27}}$$$$ a+b+kc^4\geq\frac{5} {8}\sqrt[5]{\frac{k} {2}}$$Where $ k>0. $
$$ a+b+3c^3\geq\sqrt{\frac{2} {3}}$$$$ a+b+2c^4\geq \frac{5} {8}$$
8 replies
sqing
Sunday at 12:46 PM
sqing
Today at 3:12 AM
trapezoid
Darealzolt   0
Today at 2:03 AM
Let \(ABCD\) be a trapezoid such that \(A, B, C, D\) lie on a circle with center \(O\), and side \(AB\) is parallel to side \(CD\). Diagonals \(AC\) and \(BD\) intersect at point \(M\), and \(\angle AMD = 60^\circ\). It is given that \(MO = 10\). It is also known that the difference in length between \(AB\) and \(CD\) can be expressed in the form \(m\sqrt{n}\), where \(m\) and \(n\) are positive integers and \(n\) is square-free. Compute the value of \(m + n\).
0 replies
Darealzolt
Today at 2:03 AM
0 replies
Inequalities
sqing   2
N Today at 1:47 AM by sqing
Let $ a,b,c\geq 0 ,   2a +ab + 12a bc \geq 8. $ Prove that
$$  a+  (b+c)(a+1)+\frac{4}{5}  bc \geq 4$$$$  a+  (b+c)(a+0.9996)+ 0.77  bc \geq 4$$
2 replies
sqing
May 4, 2025
sqing
Today at 1:47 AM
anyone who can help me this 2 problems?
auroracliang   2
N Yesterday at 11:51 PM by ReticulatedPython
1. Let r be the radius of the largest circle which is tangent to the parabola y=x^2 at x=0 and which lies entirely on or inside (that is, above) the parabola, find r.

2. Counting number n has the following property,: if we take any 50 different numbers from 1,2,3, ... n, there always are two numbers with the difference of 7. what is the largest value among all value of n?


thanks a lot
2 replies
auroracliang
Nov 3, 2024
ReticulatedPython
Yesterday at 11:51 PM
What conic section is this? Is this even a conic section?
invincibleee   2
N Yesterday at 11:48 PM by ReticulatedPython
IMAGE

The points in this are given by
P = (sin2A, sin4A)∀A [0,2π]
Is this a conic section? what is this?
2 replies
invincibleee
Nov 15, 2024
ReticulatedPython
Yesterday at 11:48 PM
Spheres, ellipses, and cones
ReticulatedPython   0
Yesterday at 11:38 PM
A sphere is inscribed inside a cone with base radius $1$ and height $2.$ Another sphere of radius $r$ is internally tangent to the lateral surface of the cone, but does not intersect the larger inscribed sphere. A plane is tangent to both of these spheres, and passes through the inside of the cone. The intersection of the plane and the cone forms an ellipse. Find the maximum area of this ellipse.
0 replies
ReticulatedPython
Yesterday at 11:38 PM
0 replies
Looking for users and developers
derekli   13
N Yesterday at 11:31 PM by DreamineYT
Guys I've been working on a web app that lets you grind high school lvl math. There's AMCs, AIME, BMT, HMMT, SMT etc. Also, it's infinite practice so you can keep grinding without worrying about finding new problems. Please consider helping me out by testing and also consider joining our developer team! :P :blush:

Link: https://stellarlearning.app/competitive
13 replies
derekli
May 4, 2025
DreamineYT
Yesterday at 11:31 PM
trigonometric functions
VivaanKam   12
N Yesterday at 11:06 PM by aok
Hi could someone explain the basic trigonometric functions to me like sin, cos, tan etc.
Thank you!
12 replies
VivaanKam
Apr 29, 2025
aok
Yesterday at 11:06 PM
angle MBC is equal to angle FC iff ABC is equilateral
orl   2
N Jul 24, 2005 by darij grinberg
Source: Moldova TST 2005 for JBMO, day 2, problem 1
Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.
2 replies
orl
Apr 11, 2005
darij grinberg
Jul 24, 2005
angle MBC is equal to angle FC iff ABC is equilateral
G H J
Source: Moldova TST 2005 for JBMO, day 2, problem 1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
orl
3647 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $ABC$ be an acute-angled triangle, and let $F$ be the foot of its altitude from the vertex $C$. Let $M$ be the midpoint of the segment $CA$. Assume that $CF=BM$. Then the angle $MBC$ is equal to angle $FCA$ if and only if the triangle $ABC$ is equilateral.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mildorf
785 posts
#2 • 2 Y
Y by Adventure10, Mango247
One direction is very easy. I will prove the other direction.

Let $m\angle{FCA} = \alpha = m\angle{CBM}$. Let $m\angle{CBA} = \beta$, and $x = m\angle{BMA}$. Now, by the Law of Sines, $\frac{\sin{90-\beta+\alpha}}{\sin{90-\alpha}} = \frac{AB}{BC} = \frac{\frac{AB}{AM}}{\frac{BC}{MC}} = \frac{\frac{\sin{x}}{\sin{\beta-\alpha}}}{\frac{\sin{180-x}}{\sin{\alpha}}} = \frac{\sin{\alpha}}{\sin{\beta-\alpha}}$. That is, $\cos{(\beta-\alpha)}\sin{(\beta-\alpha)} = \cos{\alpha}\sin{\alpha}$. This gives $\beta = 2\alpha$ or $\beta = 90$. Only the first is valid. But then the angle bisector bisects the opposite side, giving $AB = BC$. Then basic trigonometry completes the problem.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
darij grinberg
6555 posts
#3 • 2 Y
Y by Adventure10, Mango247
Why use trigonometry? There is a short synthetic solution:

We have to show that < MBC = < FCA holds if and only if triangle ABC is equilateral. Well, one direction is obvious: If triangle ABC is equilateral, then both the median BM and the altitude CF are actually medians, so that M and F are the midpoints of the sides CA and AB, respectively, and then < MBC = < FCA = 30° is clear from symmetry. So, it remains to prove the other direction: If < MBC = < FCA, then we have to show that triangle ABC is equilateral.

In the right-angled triangle AFC, we have < FCA = 90° - < FAC, so that < MBC = < FCA = 90° - < FAC = 90° - A.

If O is the circumcenter of triangle ABC, then BO = CO on the one hand, so that triangle BOC is isosceles, while on the other hand, the central angle theorem yields < BOC = 2 < BAC = 2A; thus, the base angle of the isosceles triangle BOC is $\measuredangle OBC=\frac{180^{\circ}-\measuredangle BOC}{2}=\frac{180^{\circ}-2A}{2}=90^{\circ}-A$. Thus, < OBC = MBC. Hence, the points B, O and M lie on one line l.

Now, if the points O and M would coincide, then it would follow that the circumcenter O of triangle ABC lies on its side CA, so that triangle ABC is right-angled at B; this would contradict the assumption that triangle ABC is acute-angled. So the points O and M cannot coincide. Now, the points O and M both lie on the perpendicular bisector of the segment CA (since O is the circumcenter of triangle ABC and M is the midpoint of the segment CA). Hence, the line l, passing through the points O and M, must be the perpendicular bisector of the segment CA. And thus, since the point B lies on this line l, we have BC = BA, so that a = c. So the triangle ABC is isosceles, and since M is the midpoint of its base CA, we have < BMC = 90°. On the other hand, < CFA = 90°. Thus, < BMC = < CFA. Also, we know that < MBC = < FCA and BM = CF. Hence, the triangles BMC and CFA are congruent, and thus BC = CA. In other words, a = b. Together with a = c, this yields a = b = c, and thus the triangle ABC is equilateral. Proof complete.

EDIT: See also http://www.mathlinks.ro/Forum/viewtopic.php?t=1118 for the second direction.

darij
Z K Y
N Quick Reply
G
H
=
a