G
Topic
First Poster
Last Poster
k a April Highlights and 2025 AoPS Online Class Information
jlacosta   0
5 hours ago
Spring is in full swing and summer is right around the corner, what are your plans? At AoPS Online our schedule has new classes starting now through July, so be sure to keep your skills sharp and be prepared for the Fall school year! Check out the schedule of upcoming classes below.

WOOT early bird pricing is in effect, don’t miss out! If you took MathWOOT Level 2 last year, no worries, it is all new problems this year! Our Worldwide Online Olympiad Training program is for high school level competitors. AoPS designed these courses to help our top students get the deep focus they need to succeed in their specific competition goals. Check out the details at this link for all our WOOT programs in math, computer science, chemistry, and physics.

Looking for summer camps in math and language arts? Be sure to check out the video-based summer camps offered at the Virtual Campus that are 2- to 4-weeks in duration. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following events:
[list][*]April 3rd (Webinar), 4pm PT/7:00pm ET, Learning with AoPS: Perspectives from a Parent, Math Camp Instructor, and University Professor
[*]April 8th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS State Discussion
April 9th (Webinar), 4:00pm PT/7:00pm ET, Learn about Video-based Summer Camps at the Virtual Campus
[*]April 10th (Math Jam), 4:30pm PT/7:30pm ET, 2025 MathILy and MathILy-Er Math Jam: Multibackwards Numbers[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
5 hours ago
0 replies
k a My Retirement & New Leadership at AoPS
rrusczyk   1571
N Mar 26, 2025 by SmartGroot
I write today to announce my retirement as CEO from Art of Problem Solving. When I founded AoPS 22 years ago, I never imagined that we would reach so many students and families, or that we would find so many channels through which we discover, inspire, and train the great problem solvers of the next generation. I am very proud of all we have accomplished and I’m thankful for the many supporters who provided inspiration and encouragement along the way. I'm particularly grateful to all of the wonderful members of the AoPS Community!

I’m delighted to introduce our new leaders - Ben Kornell and Andrew Sutherland. Ben has extensive experience in education and edtech prior to joining AoPS as my successor as CEO, including starting like I did as a classroom teacher. He has a deep understanding of the value of our work because he’s an AoPS parent! Meanwhile, Andrew and I have common roots as founders of education companies; he launched Quizlet at age 15! His journey from founder to MIT to technology and product leader as our Chief Product Officer traces a pathway many of our students will follow in the years to come.

Thank you again for your support for Art of Problem Solving and we look forward to working with millions more wonderful problem solvers in the years to come.

And special thanks to all of the amazing AoPS team members who have helped build AoPS. We’ve come a long way from here:IMAGE
1571 replies
rrusczyk
Mar 24, 2025
SmartGroot
Mar 26, 2025
k i Peer-to-Peer Programs Forum
jwelsh   157
N Dec 11, 2023 by cw357
Many of our AoPS Community members share their knowledge with their peers in a variety of ways, ranging from creating mock contests to creating real contests to writing handouts to hosting sessions as part of our partnership with schoolhouse.world.

To facilitate students in these efforts, we have created a new Peer-to-Peer Programs forum. With the creation of this forum, we are starting a new process for those of you who want to advertise your efforts. These advertisements and ensuing discussions have been cluttering up some of the forums that were meant for other purposes, so we’re gathering these topics in one place. This also allows students to find new peer-to-peer learning opportunities without having to poke around all the other forums.

To announce your program, or to invite others to work with you on it, here’s what to do:

1) Post a new topic in the Peer-to-Peer Programs forum. This will be the discussion thread for your program.

2) Post a single brief post in this thread that links the discussion thread of your program in the Peer-to-Peer Programs forum.

Please note that we’ll move or delete any future advertisement posts that are outside the Peer-to-Peer Programs forum, as well as any posts in this topic that are not brief announcements of new opportunities. In particular, this topic should not be used to discuss specific programs; those discussions should occur in topics in the Peer-to-Peer Programs forum.

Your post in this thread should have what you're sharing (class, session, tutoring, handout, math or coding game/other program) and a link to the thread in the Peer-to-Peer Programs forum, which should have more information (like where to find what you're sharing).
157 replies
jwelsh
Mar 15, 2021
cw357
Dec 11, 2023
k i C&P posting recs by mods
v_Enhance   0
Jun 12, 2020
The purpose of this post is to lay out a few suggestions about what kind of posts work well for the C&P forum. Except in a few cases these are mostly meant to be "suggestions based on historical trends" rather than firm hard rules; we may eventually replace this with an actual list of firm rules but that requires admin approval :) That said, if you post something in the "discouraged" category, you should not be totally surprised if it gets locked; they are discouraged exactly because past experience shows they tend to go badly.
-----------------------------
1. Program discussion: Allowed
If you have questions about specific camps or programs (e.g. which classes are good at X camp?), these questions fit well here. Many camps/programs have specific sub-forums too but we understand a lot of them are not active.
-----------------------------
2. Results discussion: Allowed
You can make threads about e.g. how you did on contests (including AMC), though on AMC day when there is a lot of discussion. Moderators and administrators may do a lot of thread-merging / forum-wrangling to keep things in one place.
-----------------------------
3. Reposting solutions or questions to past AMC/AIME/USAMO problems: Allowed
This forum contains a post for nearly every problem from AMC8, AMC10, AMC12, AIME, USAJMO, USAMO (and these links give you an index of all these posts). It is always permitted to post a full solution to any problem in its own thread (linked above), regardless of how old the problem is, and even if this solution is similar to one that has already been posted. We encourage this type of posting because it is helpful for the user to explain their solution in full to an audience, and for future users who want to see multiple approaches to a problem or even just the frequency distribution of common approaches. We do ask for some explanation; if you just post "the answer is (B); ez" then you are not adding anything useful.

You are also encouraged to post questions about a specific problem in the specific thread for that problem, or about previous user's solutions. It's almost always better to use the existing thread than to start a new one, to keep all the discussion in one place easily searchable for future visitors.
-----------------------------
4. Advice posts: Allowed, but read below first
You can use this forum to ask for advice about how to prepare for math competitions in general. But you should be aware that this question has been asked many many times. Before making a post, you are encouraged to look at the following:
[list]
[*] Stop looking for the right training: A generic post about advice that keeps getting stickied :)
[*] There is an enormous list of links on the Wiki of books / problems / etc for all levels.
[/list]
When you do post, we really encourage you to be as specific as possible in your question. Tell us about your background, what you've tried already, etc.

Actually, the absolute best way to get a helpful response is to take a few examples of problems that you tried to solve but couldn't, and explain what you tried on them / why you couldn't solve them. Here is a great example of a specific question.
-----------------------------
5. Publicity: use P2P forum instead
See https://artofproblemsolving.com/community/c5h2489297_peertopeer_programs_forum.
Some exceptions have been allowed in the past, but these require approval from administrators. (I am not totally sure what the criteria is. I am not an administrator.)
-----------------------------
6. Mock contests: use Mock Contests forum instead
Mock contests should be posted in the dedicated forum instead:
https://artofproblemsolving.com/community/c594864_aops_mock_contests
-----------------------------
7. AMC procedural questions: suggest to contact the AMC HQ instead
If you have a question like "how do I submit a change of venue form for the AIME" or "why is my name not on the qualifiers list even though I have a 300 index", you would be better off calling or emailing the AMC program to ask, they are the ones who can help you :)
-----------------------------
8. Discussion of random math problems: suggest to use MSM/HSM/HSO instead
If you are discussing a specific math problem that isn't from the AMC/AIME/USAMO, it's better to post these in Middle School Math, High School Math, High School Olympiads instead.
-----------------------------
9. Politics: suggest to use Round Table instead
There are important conversations to be had about things like gender diversity in math contests, etc., for sure. However, from experience we think that C&P is historically not a good place to have these conversations, as they go off the rails very quickly. We encourage you to use the Round Table instead, where it is much more clear that all posts need to be serious.
-----------------------------
10. MAA complaints: discouraged
We don't want to pretend that the MAA is perfect or that we agree with everything they do. However, we chose to discourage this sort of behavior because in practice most of the comments we see are not useful and some are frankly offensive.
[list] [*] If you just want to blow off steam, do it on your blog instead.
[*] When you have criticism, it should be reasoned, well-thought and constructive. What we mean by this is, for example, when the AOIME was announced, there was great outrage about potential cheating. Well, do you really think that this is something the organizers didn't think about too? Simply posting that "people will cheat and steal my USAMOO qualification, the MAA are idiots!" is not helpful as it is not bringing any new information to the table.
[*] Even if you do have reasoned, well-thought, constructive criticism, we think it is actually better to email it the MAA instead, rather than post it here. Experience shows that even polite, well-meaning suggestions posted in C&P are often derailed by less mature users who insist on complaining about everything.
[/list]
-----------------------------
11. Memes and joke posts: discouraged
It's fine to make jokes or lighthearted posts every so often. But it should be done with discretion. Ideally, jokes should be done within a longer post that has other content. For example, in my response to one user's question about olympiad combinatorics, I used a silly picture of Sogiita Gunha, but it was done within a context of a much longer post where it was meant to actually make a point.

On the other hand, there are many threads which consist largely of posts whose only content is an attached meme with the word "MAA" in it. When done in excess like this, the jokes reflect poorly on the community, so we explicitly discourage them.
-----------------------------
12. Questions that no one can answer: discouraged
Examples of this: "will MIT ask for AOIME scores?", "what will the AIME 2021 cutoffs be (asked in 2020)", etc. Basically, if you ask a question on this forum, it's better if the question is something that a user can plausibly answer :)
-----------------------------
13. Blind speculation: discouraged
Along these lines, if you do see a question that you don't have an answer to, we discourage "blindly guessing" as it leads to spreading of baseless rumors. For example, if you see some user posting "why are there fewer qualifiers than usual this year?", you should not reply "the MAA must have been worried about online cheating so they took fewer people!!". Was sich überhaupt sagen lässt, lässt sich klar sagen; und wovon man nicht reden kann, darüber muss man schweigen.
-----------------------------
14. Discussion of cheating: strongly discouraged
If you have evidence or reasonable suspicion of cheating, please report this to your Competition Manager or to the AMC HQ; these forums cannot help you.
Otherwise, please avoid public discussion of cheating. That is: no discussion of methods of cheating, no speculation about how cheating affects cutoffs, and so on --- it is not helpful to anyone, and it creates a sour atmosphere. A longer explanation is given in Seriously, please stop discussing how to cheat.
-----------------------------
15. Cutoff jokes: never allowed
Whenever the cutoffs for any major contest are released, it is very obvious when they are official. In the past, this has been achieved by the numbers being posted on the official AMC website (here) or through a post from the AMCDirector account.

You must never post fake cutoffs, even as a joke. You should also refrain from posting cutoffs that you've heard of via email, etc., because it is better to wait for the obvious official announcement. A longer explanation is given in A Treatise on Cutoff Trolling.
-----------------------------
16. Meanness: never allowed
Being mean is worse than being immature and unproductive. If another user does something which you think is inappropriate, use the Report button to bring the post to moderator attention, or if you really must reply, do so in a way that is tactful and constructive rather than inflammatory.
-----------------------------

Finally, we remind you all to sit back and enjoy the problems. :D

-----------------------------
(EDIT 2024-09-13: AoPS has asked to me to add the following item.)

Advertising paid program or service: never allowed

Per the AoPS Terms of Service (rule 5h), general advertisements are not allowed.

While we do allow advertisements of official contests (at the MAA and MATHCOUNTS level) and those run by college students with at least one successful year, any and all advertisements of a paid service or program is not allowed and will be deleted.
0 replies
v_Enhance
Jun 12, 2020
0 replies
k i Stop looking for the "right" training
v_Enhance   50
N Oct 16, 2017 by blawho12
Source: Contest advice
EDIT 2019-02-01: https://blog.evanchen.cc/2019/01/31/math-contest-platitudes-v3/ is the updated version of this.

EDIT 2021-06-09: see also https://web.evanchen.cc/faq-contest.html.

Original 2013 post
50 replies
v_Enhance
Feb 15, 2013
blawho12
Oct 16, 2017
Ways to Place Counters on 2mx2n board
EpicParadox   37
N 9 minutes ago by akliu
Source: 2019 Canadian Mathematical Olympiad Problem 3
You have a $2m$ by $2n$ grid of squares coloured in the same way as a standard checkerboard. Find the total number of ways to place $mn$ counters on white squares so that each square contains at most one counter and no two counters are in diagonally adjacent white squares.
37 replies
EpicParadox
Mar 28, 2019
akliu
9 minutes ago
Vieta's Polynomial x^20-7x^3+1=0
Goblik   0
18 minutes ago
If $x_1,x_2,...,x_{20}$ are roots of $x^{20}-7x^3+1=0$, then find $\frac{1}{x_1^{2}+1}+\frac{1}{x_2^{2}+1}+...+\frac{1}{x_{20}^{2}+1}$
0 replies
Goblik
18 minutes ago
0 replies
Number theory
Maaaaaaath   1
N 33 minutes ago by CHESSR1DER
Let $m$ be a positive integer . Prove that there exists infinitely many pairs of positive integers $(x,y)$ such that $\gcd(x,y)=1$ and :

$$xy  |  x^2+y^2+m$$
1 reply
Maaaaaaath
3 hours ago
CHESSR1DER
33 minutes ago
Problem 4 from IMO 1997
iandrei   28
N an hour ago by akliu
Source: IMO Shortlist 1997, Q4
An $ n \times n$ matrix whose entries come from the set $ S = \{1, 2, \ldots , 2n - 1\}$ is called a silver matrix if, for each $ i = 1, 2, \ldots , n$, the $ i$-th row and the $ i$-th column together contain all elements of $ S$. Show that:

(a) there is no silver matrix for $ n = 1997$;

(b) silver matrices exist for infinitely many values of $ n$.
28 replies
iandrei
Jul 28, 2003
akliu
an hour ago
2025 USAMO Rubric
plang2008   17
N 2 hours ago by Mathandski
1. Let $k$ and $d$ be positive integers. Prove that there exists a positive integer $N$ such that for every odd integer $n>N$, the digits in the base-$2n$ representation of $n^k$ are all greater than $d$.

Rubric for Problem 1

2. Let $n$ and $k$ be positive integers with $k<n$. Let $P(x)$ be a polynomial of degree $n$ with real coefficients, nonzero constant term, and no repeated roots. Suppose that for any real numbers $a_0,\,a_1,\,\ldots,\,a_k$ such that the polynomial $a_kx^k+\cdots+a_1x+a_0$ divides $P(x)$, the product $a_0a_1\cdots a_k$ is zero. Prove that $P(x)$ has a nonreal root.

Rubric for Problem 2

3. Alice the architect and Bob the builder play a game. First, Alice chooses two points $P$ and $Q$ in the plane and a subset $\mathcal{S}$ of the plane, which are announced to Bob. Next, Bob marks infinitely many points in the plane, designating each a city. He may not place two cities within distance at most one unit of each other, and no three cities he places may be collinear. Finally, roads are constructed between the cities as follows: for each pair $A,\,B$ of cities, they are connected with a road along the line segment $AB$ if and only if the following condition holds:
[center]For every city $C$ distinct from $A$ and $B$, there exists $R\in\mathcal{S}$ such[/center]
[center]that $\triangle PQR$ is directly similar to either $\triangle ABC$ or $\triangle BAC$.[/center]
Alice wins the game if (i) the resulting roads allow for travel between any pair of cities via a finite sequence of roads and (ii) no two roads cross. Otherwise, Bob wins. Determine, with proof, which player has a winning strategy.

Note: $\triangle UVW$ is directly similar to $\triangle XYZ$ if there exists a sequence of rotations, translations, and dilations sending $U$ to $X$, $V$ to $Y$, and $W$ to $Z$.

Rubric for Problem 3

4. Let $H$ be the orthocenter of acute triangle $ABC$, let $F$ be the foot of the altitude from $C$ to $AB$, and let $P$ be the reflection of $H$ across $BC$. Suppose that the circumcircle of triangle $AFP$ intersects line $BC$ at two distinct points $X$ and $Y$. Prove that $C$ is the midpoint of $XY$.

Rubric for Problem 4

5. Determine, with proof, all positive integers $k$ such that \[\frac{1}{n+1} \sum_{i=0}^n \binom{n}{i}^k\]is an integer for every positive integer $n$.

Rubric for Problem 5

6. Let $m$ and $n$ be positive integers with $m\geq n$. There are $m$ cupcakes of different flavors arranged around a circle and $n$ people who like cupcakes. Each person assigns a nonnegative real number score to each cupcake, depending on how much they like the cupcake. Suppose that for each person $P$, it is possible to partition the circle of $m$ cupcakes into $n$ groups of consecutive cupcakes so that the sum of $P$'s scores of the cupcakes in each group is at least $1$. Prove that it is possible to distribute the $m$ cupcakes to the $n$ people so that each person $P$ receives cupcakes of total score at least $1$ with respect to $P$.

Rubric for Problem 6
17 replies
plang2008
Today at 1:33 AM
Mathandski
2 hours ago
2016 Sets
NormanWho   108
N 4 hours ago by akliu
Source: 2016 USAJMO 4
Find, with proof, the least integer $N$ such that if any $2016$ elements are removed from the set ${1, 2,...,N}$, one can still find $2016$ distinct numbers among the remaining elements with sum $N$.
108 replies
NormanWho
Apr 20, 2016
akliu
4 hours ago
Orange MOP Opportunity
blueprimes   16
N 5 hours ago by fruitmonster97
Hello AoPS,

A reputable source that is of a certain credibility has communicated me about details of Orange MOP, a new pathway to qualify for MOP. In particular, 3 rounds of a 10-problem proof-style examination, covering a variety of mathematical topics that requires proofs will be held from September 27, 2025 12:00 AM - November 8, 2025 11:59 PM EST. Each round will occur biweekly on a Saturday starting from September 27 as described above. The deadline for late submissions will be November 20, 2025 11:59 PM EST.

Solutions can be either handwritten or typed digitally with $\LaTeX$. If you are sending solutions digitally through physical scan, please make sure your handwriting is eligible. Inability to discern hand-written solutions may warrant point deductions.

As for rules, digital resources and computational intelligence systems are allowed. Textbooks, reference handouts, and calculators are also a freedom provided by the MAA.

The link is said to be posted on the MAA website during the summer, and invites aspiring math students of all grade levels to participate. As for scoring, solutions will be graded on a $10$-point scale, and solutions will be graded in terms of both elegance and correctness.

As for qualification for further examinations, the Orange MOP examination passes both the AIME and USAJMO/USAMO requirement thresholds, and the top 5 scorers will receive the benefits and prestige of participating at the national level in the MOP program, and possibly the USA TST and the USA IMO team.

I implore you to consider this rare oppourtunity.

Warm wishes.
16 replies
blueprimes
Today at 3:24 AM
fruitmonster97
5 hours ago
USAMO Scores Release Date
CrunchyCucumber   14
N Today at 9:54 AM by CatCatHead
Does anyone know when individual scores, and medal+MOP cutoffs on the USAMO will be officially released? The website says 2-3 weeks, but I’ve heard it takes much longer in previous year.
14 replies
CrunchyCucumber
Yesterday at 6:22 PM
CatCatHead
Today at 9:54 AM
2012 AIME II Problem 12
xHypotenuse   5
N Yesterday at 10:59 PM by mathprodigy2011
Hello guys, I want to know what was wrong with my PIE approach.

First here's the problem:

For a positive integer $p$, define the positive integer $n$ to be $p$-safe if $n$ differs in absolute value by more than $2$ from all multiples of $p$. For example, the set of $10$-safe numbers is $\{ 3, 4, 5, 6, 7, 13, 14, 15, 16, 17, 23, \ldots\}$. Find the number of positive integers less than or equal to $10,000$ which are simultaneously $7$-safe, $11$-safe, and $13$-safe.


My approach was finding the number of 7-unsafe numbers, 11-unsafe, and 13-unsafe, then finding 77-unsafe, 91-unsafe, 143-unsafe, and finally 1001-unsafe numbers and using PIE for a complementary counting approach. But somehow I got a number over than 10,000 for the total number of unsafe numbers. Is my approach valid and have I made arithmetic errors or does the PIE approach just not work?
5 replies
xHypotenuse
Monday at 11:40 PM
mathprodigy2011
Yesterday at 10:59 PM
Square Root Equality
djmathman   67
N Yesterday at 2:59 PM by vincentwant
Source: 2013 USAJMO #6/USAMO #4
Find all real numbers $x,y,z\geq 1$ satisfying \[\min(\sqrt{x+xyz},\sqrt{y+xyz},\sqrt{z+xyz})=\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}.\]
67 replies
djmathman
May 1, 2013
vincentwant
Yesterday at 2:59 PM
The 2nd geometry problem is #20
Frestho   59
N Yesterday at 4:11 AM by megahertz13
Source: 2020 AMC 10A #20 / 2020 AMC 12A #18
Quadrilateral $ABCD$ satisfies $\angle ABC = \angle ACD = 90^{\circ}, AC = 20$, and $CD = 30$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at point $E$, and $AE = 5$. What is the area of quadrilateral $ABCD$?

$\textbf{(A) } 330 \qquad\textbf{(B) } 340 \qquad\textbf{(C) } 350 \qquad\textbf{(D) } 360 \qquad\textbf{(E) } 370$
59 replies
Frestho
Jan 31, 2020
megahertz13
Yesterday at 4:11 AM
amc 10 prep
Aopsauser9999   3
N Yesterday at 3:13 AM by Aopsauser9999
Source: hi
Hi! This year I got 69 and 72 (or something around those numbers) on the 2024 AMC 10A and 10B. I want to qualify for AIME this year. Is this a feasible goal? To prepare, should I do all of the exercises in Volume 1 and the intro books, then do mock tests and practice tests from mathdash and stuff?
3 replies
Aopsauser9999
Yesterday at 2:34 AM
Aopsauser9999
Yesterday at 3:13 AM
What to do...
jb2015007   32
N Monday at 8:52 PM by jb2015007
im in 7th grade and took the AMC 10 A/B with absouletely nauseating score, which i will not reveal. I wasnt even close to AIME frankly. My goals are the following:
7th grade: AMC 8 - DHR
8th grade:AIME qual, AMC 8 Perfect
9th grade: AMC 10 DHR maybe?, AIME 7+
10th grade: USAJMO, AIME 12+, AMC 10 DHR
11th grade: USAMO, AIME 12+, AMC 12 DHR
12th grade: USAMO, AIME great score, AMC 12 perfect or close?
These are the goals that i want to achieve. I will do literally anything to achieve them. Can someone please give me a good tip so i can follow it for the next 5 years of my life to become a 3 time USAMO qual and a 5 time AIME qual, and have an perfect AMC 8 under my belt?
32 replies
jb2015007
Dec 14, 2024
jb2015007
Monday at 8:52 PM
USAJMO #5 - points on a circle
hrithikguy   207
N Mar 31, 2025 by LeYohan
Points $A,B,C,D,E$ lie on a circle $\omega$ and point $P$ lies outside the circle. The given points are such that (i) lines $PB$ and $PD$ are tangent to $\omega$, (ii) $P, A, C$ are collinear, and (iii) $DE \parallel AC$. Prove that $BE$ bisects $AC$.
207 replies
hrithikguy
Apr 28, 2011
LeYohan
Mar 31, 2025
Geo challenge on finding simple ways to solve it
Assassino9931   3
N Mar 30, 2025 by africanboy
Source: Bulgaria Spring Mathematical Competition 2025 9.2
Let $ABC$ be an acute scalene triangle inscribed in a circle \( \Gamma \). The angle bisector of \( \angle BAC \) intersects \( BC \) at \( L \) and \( \Gamma \) at \( S \). The point \( M \) is the midpoint of \( AL \). Let \( AD \) be the altitude in \( \triangle ABC \), and the circumcircle of \( \triangle DSL \) intersects \( \Gamma \) again at \( P \). Let \( N \) be the midpoint of \( BC \), and let \( K \) be the reflection of \( D \) with respect to \( N \). Prove that the triangles \( \triangle MPS \) and \( \triangle ADK \) are similar.
3 replies
Assassino9931
Mar 30, 2025
africanboy
Mar 30, 2025
Geo challenge on finding simple ways to solve it
G H J
G H BBookmark kLocked kLocked NReply
Source: Bulgaria Spring Mathematical Competition 2025 9.2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1219 posts
#1 • 1 Y
Y by ehuseyinyigit
Let $ABC$ be an acute scalene triangle inscribed in a circle \( \Gamma \). The angle bisector of \( \angle BAC \) intersects \( BC \) at \( L \) and \( \Gamma \) at \( S \). The point \( M \) is the midpoint of \( AL \). Let \( AD \) be the altitude in \( \triangle ABC \), and the circumcircle of \( \triangle DSL \) intersects \( \Gamma \) again at \( P \). Let \( N \) be the midpoint of \( BC \), and let \( K \) be the reflection of \( D \) with respect to \( N \). Prove that the triangles \( \triangle MPS \) and \( \triangle ADK \) are similar.
This post has been edited 1 time. Last edited by Assassino9931, Mar 30, 2025, 1:09 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
MathLuis
1471 posts
#2 • 1 Y
Y by Funcshun840
Let $S'$ midpoint of arc $BAC$ on $\Gamma$, let $AA'CB$ isosceles trapezoid, let $AA_1$ diameter of $\Gamma$ and let $T$ point on $BC$ such that $AT$ is tangent to $\Gamma$. And finally let $S'L \cap \Gamma=E$ which by ratio Lemma it happens that $AE$ is symedian.
Claim 1: $T,P,A_1$ are colinear.
Proof: From Reim's theorem we have $P,D,A'$ colinear and thus stacking ratio lemmas:
\[ \frac{BP}{PC} \cdot \frac{BA_1}{A_1C}=\frac{BD}{DC} \cdot \left(\frac{CA'}{A'B} \right)^2 \cdot \frac{BK}{KC}=\left( \frac{BA}{AC} \right)^2=\frac{BT}{TC} \]Happens to finish (notice $A',K,A_1$ colinear from reflecting was used).
To finish: Now just note that $ADKA'$ is a rectangle so $\measuredangle MSP=\measuredangle AA'D=\measuredangle AKD$ but also using Claim 1 and projecting cross ratios:
\[ -1=(A, E; P, A_1) \overset{S'}{=} (A, L; S'P \cap AL, \infty_{AL}) \implies P,M,S' \; \text{colinear!} \]and from that we get $\measuredangle SPM=90=\measuredangle KDA$ thus we are done :cool:.
This post has been edited 1 time. Last edited by MathLuis, Mar 30, 2025, 2:10 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Assassino9931
1219 posts
#3 • 1 Y
Y by ehuseyinyigit
Here is my (not too complicated) solution, though some contestants claimed that there are even easier approaches (i.e. not involving the midpoint of arc $BAC$), though I don't know their details.

Without loss of generality, we assume \( AB > AC \). Using standard angle notations for the triangle, we have \( \angle LMD = 180^\circ - 2\angle DLM = 180^\circ - 2(\beta + \frac{\alpha}{2}) = \gamma - \beta \). Also, \( \angle APD = \angle APS - \angle DPS = \gamma + \frac{\alpha}{2} - \angle DLA = \gamma - \beta \), which means quadrilateral \( AMDP \) is cyclic. From here, we find \( \angle MPS = \angle MPD + \angle DPS = \angle MAD + \angle DLA = 90^\circ \).

Let \( MP \) intersect \( \Gamma \) at point \( T \). Thus, \( T \) is the midpoint of arc \( BAC \) on \( \Gamma \) because \( \angle SPT = 90^\circ \). We have \( AD \parallel TN \perp BC \), so \( TN \) intersects \( AK \) at its midpoint \( W \) (from the midsegment in \( \triangle ADK \)). Therefore, \( \angle TAS = 90^\circ \) since \( ST \) is a diameter of \( \Gamma \), and \( \angle TWM = \angle TNB = 90^\circ \) due to the parallelism of \( MW \) and \( DK \). Hence, \( ATWM \) is cyclic, leading to \( \angle AKD = \angle AWM = \angle ATM = \angle ATP = \angle ASP = \angle MSP \), which concludes the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
africanboy
6 posts
#4 • 2 Y
Y by Assassino9931, bo18
Very straightforward geo problem.

Without loss of generality, we assume \( AB > AC \).

It's clear that \(ML=MA=MD \). Let \(P'\) be the second point of intersection of the circumcircles of \( \triangle DSL \) and \( \triangle MAD \).
\( \angle SP'A = \angle SP'D + \angle AP'D = \angle MLD + \angle DML = \angle MDC = \angle ALB = 180^\circ - \beta - \frac{\alpha}{2} \)
\( \angle SBA = \beta + \frac{\alpha}{2} \)
So \( P' \) lies on \( \Gamma \), meaning \(P'=P \)
\( \angle SPM = \angle SPD + \angle MPD = \angle DLA + \angle DAL = 90^\circ \)


Let the line \(SP\) cross the line \(BC\) at \(X\). So the points \(B, K, L, D, C, X \) lie on the line \(BC\) in that order.
\(XC = a, CD = BK = b, DL = c, LK = d\)
We have \(XC.XB = XS.XP = XD.XL \) by Power of a point, which simplifies to \(a(a+2b+c+d) = (a+b)(a+b+c) \) or \(ad = b^2 + bc\) or \(ad+bd+cd = b^2+bc+bd+cd\) or \(d(a+b+c) = (b+c)(b+d) \) so \(KL.LX = BL.LC \).
But by Power of a point \(BL.LC = AL.LS \) so \(AL.LS = KL.LX \) which implies that \(AKLX\) is cyclic. Now \( \angle AKD = \angle ASP \) and we conclude by showing that the two angles in \( \triangle MPS \) and \( \triangle ADK \) are equal.
Z K Y
N Quick Reply
G
H
=
a