ka May Highlights and 2025 AoPS Online Class Information
jlacosta0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.
Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.
Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!
Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.
Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28
Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19
Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30
Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14
Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19
Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)
Intermediate: Grades 8-12
Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22
MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)
AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21
AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22
Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:
To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.
More specifically:
For new threads:
a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.
Examples: Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿) Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"
b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.
Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".
c) Good problem statement:
Some recent really bad post was:
[quote][/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.
For answers to already existing threads:
d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve , do not answer with " is a solution" only. Either you post any kind of proof or at least something unexpected (like " is the smallest solution). Someone that does not see that is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.
e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.
To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!
Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).
The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
4 wise men and 100 hats. 3 must guess their numbers
NO_SQUARES1
N21 minutes ago
by noemiemath
Source: 239 MO 2025 10-11 p5
There are four wise men in a row, each sees only those following him in the row, i.e. the st sees the other three, the nd sees the rd and th, and the rd sees only the th. The devil has hats, numbered from to , he puts one hat on each wise man, and hides the extra hats. After that, each wise man (in turn: first the first, then the second, etc.) loudly calls a number, trying to guess the number of his hat. The numbers mentioned should not be repeated. When all the wise men have spoken, they take off their hats and check which one of them has guessed. Can the sages to act in such a way that at least three of them knowingly guessed?
Let be an acute triangle with circumcircle . Let be the midpoint of and let be the midpoint of . Let be the foot of the altitude from and let be the centroid of the triangle . Let be a circle through and that is tangent to the circle at a point . Prove that the points and are collinear.
Proposed by Ismail Isaev and Mikhail Isaev, Russia
<DPA+ <AQD =< QIP wanted, incircle circumcircle related
parmenides5142
N32 minutes ago
by AR17296174
Source: IMo 2019 SL G6
Let be the incentre of acute-angled triangle . Let the incircle meet , and at , and respectively. Let line intersect the circumcircle of the triangle at and , such that lies between and . Prove that .
Let be an acute-angled triangle with circumcircle . A circle is internally tangent to at and also tangent to at . Let and intersect at and respectively. Let and be points on line such that is the midpoint of and is the midpoint of . Lines and meet at and intersect again at and respectively. The ray meets the circumcircle of triangle again at .
Denote by the circumcircle of the acute triangle . Point is the midpoint of the arc of not containing . Circle centered at is tangent to the segment at point . Tangents to the circle passing through point intersect line at points and such that points lie on the line in that order. Circle is tangent to the segments and and to the circle at point . Circle is tangent to the segments and and to the circle at point . Lines and intersect at point . Prove that .
Let be a positive integer. Dominoes are placed on a board in such a way that every cell of the board is adjacent to exactly one cell covered by a domino. For each , determine the largest number of dominoes that can be placed in this way.
(A domino is a tile of size or . Dominoes are placed on the board in such a way that each domino covers exactly two cells of the board, and dominoes do not overlap. Two cells are said to be adjacent if they are different and share a common side.)
Difference of counts of any 2 colors in any interesting rectangle is at most 1
NO_SQUARES0
an hour ago
Source: 239 MO 2025 10-11 p8
Positive integer numbers and are given. Losyash likes some of the cells of the checkerboard. In addition, he is interested in any checkered rectangle with a perimeter of , the upper-left corner of which coincides with the upper-left corner of the board (there are such rectangles in total). Given and , determine whether Losyash can color each cell he likes in one of colors so that in any rectangle of interest to him the number of cells of any two colors differ by no more than .
Reflection of H about O and SA + SB + SC + AM < AB + BC + CA if US=UM.
NO_SQUARES0
an hour ago
Source: 239 MO 2025 10-11 p7
Point is the midpoint of side of an acute—angled triangle . The point is symmetric to the orthocenter relative to its circumcenter. The point inside triangle is such that . Prove that .
The numbers from to are arranged in some order in the cells of the strip. Let's call a flip an operation that takes two arbitrary cells of a strip and swaps the numbers written in them, but only if the larger of these numbers is located to the left of the smaller one. A flop is a set of several flips that do not contain common cells that are executed simultaneously. (For example, a simultaneous flip between the 2nd and 8th cells and a flip between the 5th and 101st cells.) Prove that there exists a sequence of flops such that for any initial arrangement, applying this sequence of flops to it will result in the numbers being ordered from left to right in ascending order.
Fix a circle , a line to tangent , and another circle disjoint from such that and lie on opposite sides of . The tangents to from a variable point on meet at and . Prove that, as varies over , the circumcircle of is tangent to two fixed circles.
You have only proved that A is included in B. Now you need to prove that B is included in A. It is not very hard, but if you don't do it, you will lose half the points of this question.
You have only proved that A is included in B. Now you need to prove that B is included in A. It is not very hard, but if you don't do it, you will lose half the points of this question.