Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Interesting inequality of sequence
GeorgeRP   2
N 28 minutes ago by oty
Source: Bulgaria IMO TST 2025 P2
Let $d\geq 2$ be an integer and $a_0,a_1,\ldots$ is a sequence of real numbers for which $a_0=a_1=\cdots=a_d=1$ and:
$$a_{k+1}\geq a_k-\frac{a_{k-d}}{4d}, \forall_{k\geq d}$$Prove that all elements of the sequence are positive.
2 replies
GeorgeRP
Wednesday at 7:47 AM
oty
28 minutes ago
Coloring cubes in a large cube with restrictions
emi3.141592   1
N 41 minutes ago by venhancefan777
Source: Problem 3 from Regional Olympiad of Mexico Southeast 2024
A large cube of size \(4 \times 4 \times 4\) is made up of 64 small unit cubes. Exactly 16 of these small cubes must be colored red, subject to the following condition:

In each block of \(1 \times 1 \times 4\), \(1 \times 4 \times 1\), and \(4 \times 1 \times 1\) cubes, there must be exactly one red cube.

Determine how many different ways it is possible to choose the 16 small cubes to be colored red.

Note: Two colorings are considered different even if one can be obtained from the other by rotations or symmetries of the cube.
1 reply
emi3.141592
Sep 29, 2024
venhancefan777
41 minutes ago
IMO 2009, Problem 5
orl   91
N an hour ago by maromex
Source: IMO 2009, Problem 5
Determine all functions $ f$ from the set of positive integers to the set of positive integers such that, for all positive integers $ a$ and $ b$, there exists a non-degenerate triangle with sides of lengths
\[ a, f(b) \text{ and } f(b + f(a) - 1).\]
(A triangle is non-degenerate if its vertices are not collinear.)

Proposed by Bruno Le Floch, France
91 replies
orl
Jul 16, 2009
maromex
an hour ago
What is thiss
EeEeRUT   4
N an hour ago by lksb
Source: Thailand MO 2025 P6
Find all function $f: \mathbb{R}^+ \rightarrow \mathbb{R}$,such that the inequality $$f(x) + f\left(\frac{y}{x}\right) \leqslant \frac{x^3}{y^2} + \frac{y}{x^3}$$holds for all positive reals $x,y$ and for every positive real $x$, there exist positive reals $y$, such that the equality holds.
4 replies
EeEeRUT
Wednesday at 6:45 AM
lksb
an hour ago
problem about equation
jred   2
N 2 hours ago by Truly_for_maths
Source: China south east mathematical Olympiad 2006 problem4
Given any positive integer $n$, let $a_n$ be the real root of equation $x^3+\dfrac{x}{n}=1$. Prove that
(1) $a_{n+1}>a_n$;
(2) $\sum_{i=1}^{n}\frac{1}{(i+1)^2a_i} <a_n$.
2 replies
jred
Jul 4, 2013
Truly_for_maths
2 hours ago
number theory and combinatoric sets of integers relations
trying_to_solve_br   40
N 2 hours ago by MathLuis
Source: IMO 2021 P6
Let $m\ge 2$ be an integer, $A$ a finite set of integers (not necessarily positive) and $B_1,B_2,...,B_m$ subsets of $A$. Suppose that, for every $k=1,2,...,m$, the sum of the elements of $B_k$ is $m^k$. Prove that $A$ contains at least $\dfrac{m}{2}$ elements.
40 replies
trying_to_solve_br
Jul 20, 2021
MathLuis
2 hours ago
Interesting inequalities
sqing   10
N 3 hours ago by ytChen
Source: Own
Let $ a,b,c\geq 0 , (a+k )(b+c)=k+1.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2k-3+2\sqrt{k+1}}{3k-1}$$Where $ k\geq \frac{2}{3}.$
Let $ a,b,c\geq 0 , (a+1)(b+c)=2.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 2\sqrt{2}-1$$Let $ a,b,c\geq 0 , (a+3)(b+c)=4.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{7}{4}$$Let $ a,b,c\geq 0 , (3a+2)(b+c)= 5.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2(2\sqrt{15}-5)}{3}$$
10 replies
sqing
May 10, 2025
ytChen
3 hours ago
GMO 2024 P1
Z4ADies   5
N 3 hours ago by awesomeming327.
Source: Geometry Mains Olympiad (GMO) 2024 P1
Let \( ABC \) be an acute triangle. Define \( I \) as its incenter. Let \( D \) and \( E \) be the incircle's tangent points to \( AC \) and \( AB \), respectively. Let \( M \) be the midpoint of \( BC \). Let \( G \) be the intersection point of a perpendicular line passing through \( M \) to \( DE \). Line \( AM \) intersects the circumcircle of \( \triangle ABC \) at \( H \). The circumcircle of \( \triangle AGH \) intersects line \( GM \) at \( J \). Prove that quadrilateral \( BGCJ \) is cyclic.

Author:Ismayil Ismayilzada (Azerbaijan)
5 replies
Z4ADies
Oct 20, 2024
awesomeming327.
3 hours ago
Power sequence
TheUltimate123   7
N 3 hours ago by MathLuis
Source: ELMO Shortlist 2023 N2
Determine the greatest positive integer \(n\) for which there exists a sequence of distinct positive integers \(s_1\), \(s_2\), \(\ldots\), \(s_n\) satisfying \[s_1^{s_2}=s_2^{s_3}=\cdots=s_{n-1}^{s_n}.\]
Proposed by Holden Mui
7 replies
TheUltimate123
Jun 29, 2023
MathLuis
3 hours ago
IMO Shortlist 2013, Combinatorics #4
lyukhson   21
N 5 hours ago by Ciobi_
Source: IMO Shortlist 2013, Combinatorics #4
Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $.
We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.
21 replies
lyukhson
Jul 9, 2014
Ciobi_
5 hours ago
Cycle in a graph with a minimal number of chords
GeorgeRP   4
N 6 hours ago by CBMaster
Source: Bulgaria IMO TST 2025 P3
In King Arthur's court every knight is friends with at least $d>2$ other knights where friendship is mutual. Prove that King Arthur can place some of his knights around a round table in such a way that every knight is friends with the $2$ people adjacent to him and between them there are at least $\frac{d^2}{10}$ friendships of knights that are not adjacent to each other.
4 replies
GeorgeRP
Wednesday at 7:51 AM
CBMaster
6 hours ago
amazing balkan combi
egxa   8
N Yesterday at 7:55 PM by Gausikaci
Source: BMO 2025 P4
There are $n$ cities in a country, where $n \geq 100$ is an integer. Some pairs of cities are connected by direct (two-way) flights. For two cities $A$ and $B$ we define:

$(i)$ A $\emph{path}$ between $A$ and $B$ as a sequence of distinct cities $A = C_0, C_1, \dots, C_k, C_{k+1} = B$, $k \geq 0$, such that there are direct flights between $C_i$ and $C_{i+1}$ for every $0 \leq i \leq k$;
$(ii)$ A $\emph{long path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has more cities;
$(iii)$ A $\emph{short path}$ between $A$ and $B$ as a path between $A$ and $B$ such that no other path between $A$ and $B$ has fewer cities.
Assume that for any pair of cities $A$ and $B$ in the country, there exist a long path and a short path between them that have no cities in common (except $A$ and $B$). Let $F$ be the total number of pairs of cities in the country that are connected by direct flights. In terms of $n$, find all possible values $F$

Proposed by David-Andrei Anghel, Romania.
8 replies
egxa
Apr 27, 2025
Gausikaci
Yesterday at 7:55 PM
abc = 1 Inequality generalisation
CHESSR1DER   6
N Yesterday at 7:41 PM by CHESSR1DER
Source: Own
Let $a,b,c > 0$, $abc=1$.
Find min $ \frac{1}{a^m(bx+cy)^n} + \frac{1}{b^m(cx+ay)^n} + \frac{1}{c^m(cx+ay)^n}$.
$1)$ $m,n,x,y$ are fixed positive integers.
$2)$ $m,n,x,y$ are fixed positive real numbers.
6 replies
CHESSR1DER
Yesterday at 6:40 PM
CHESSR1DER
Yesterday at 7:41 PM
Fond all functions in M with a) f(1)=5/2, b) f(1)=√3
Amir Hossein   5
N Yesterday at 7:35 PM by jasperE3
Source: IMO LongList 1982 - P34
Let $M$ be the set of all functions $f$ with the following properties:

(i) $f$ is defined for all real numbers and takes only real values.

(ii) For all $x, y \in \mathbb R$ the following equality holds: $f(x)f(y) = f(x + y) + f(x - y).$

(iii) $f(0) \neq 0.$

Determine all functions $f \in M$ such that

(a) $f(1)=\frac 52$,

(b) $f(1)= \sqrt 3$.
5 replies
Amir Hossein
Mar 18, 2011
jasperE3
Yesterday at 7:35 PM
Sum and product of 5 numbers
jl_   1
N Apr 23, 2025 by jl_
Source: Malaysia IMONST 2 2023 (Primary) P2
Ivan bought $50$ cats consisting of five different breeds. He records the number of cats of each breed and after multiplying these five numbers he obtains the number $100000$. How many cats of each breed does he have?
1 reply
jl_
Apr 23, 2025
jl_
Apr 23, 2025
Sum and product of 5 numbers
G H J
G H BBookmark kLocked kLocked NReply
Source: Malaysia IMONST 2 2023 (Primary) P2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jl_
9 posts
#1
Y by
Ivan bought $50$ cats consisting of five different breeds. He records the number of cats of each breed and after multiplying these five numbers he obtains the number $100000$. How many cats of each breed does he have?
This post has been edited 5 times. Last edited by jl_, Apr 23, 2025, 10:21 AM
Reason: Change source
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jl_
9 posts
#2
Y by
Answer: $10$ each.
Let $a,b,c,d,e$ denote the number of cats of each breed. We know that $a+b+c+d+e=50$ and $abcde=100000$. By AM-GM, $$10=\frac{a+b+c+d+e}{5} \geq \sqrt[5]{abcde}=10.$$This is precisely the equality case, which can only happen when $a=b=c=d=e=10$. $\blacksquare$
This post has been edited 1 time. Last edited by jl_, Apr 25, 2025, 12:41 PM
Reason: Add black square at end of proof
Z K Y
N Quick Reply
G
H
=
a