Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
IGO 2021 P1
SPHS1234   14
N 23 minutes ago by LeYohan
Source: igo 2021 intermediate p1
Let $ABC$ be a triangle with $AB = AC$. Let $H$ be the orthocenter of $ABC$. Point
$E$ is the midpoint of $AC$ and point $D$ lies on the side $BC$ such that $3CD = BC$. Prove that
$BE \perp HD$.

Proposed by Tran Quang Hung - Vietnam
14 replies
SPHS1234
Dec 30, 2021
LeYohan
23 minutes ago
Nationalist Combo
blacksheep2003   16
N 31 minutes ago by Martin2001
Source: USEMO 2019 Problem 5
Let $\mathcal{P}$ be a regular polygon, and let $\mathcal{V}$ be its set of vertices. Each point in $\mathcal{V}$ is colored red, white, or blue. A subset of $\mathcal{V}$ is patriotic if it contains an equal number of points of each color, and a side of $\mathcal{P}$ is dazzling if its endpoints are of different colors.

Suppose that $\mathcal{V}$ is patriotic and the number of dazzling edges of $\mathcal{P}$ is even. Prove that there exists a line, not passing through any point in $\mathcal{V}$, dividing $\mathcal{V}$ into two nonempty patriotic subsets.

Ankan Bhattacharya
16 replies
blacksheep2003
May 24, 2020
Martin2001
31 minutes ago
subsets of {1,2,...,mn}
N.T.TUAN   10
N 40 minutes ago by de-Kirschbaum
Source: USA TST 2005, Problem 1
Let $n$ be an integer greater than $1$. For a positive integer $m$, let $S_{m}= \{ 1,2,\ldots, mn\}$. Suppose that there exists a $2n$-element set $T$ such that
(a) each element of $T$ is an $m$-element subset of $S_{m}$;
(b) each pair of elements of $T$ shares at most one common element;
and
(c) each element of $S_{m}$ is contained in exactly two elements of $T$.

Determine the maximum possible value of $m$ in terms of $n$.
10 replies
N.T.TUAN
May 14, 2007
de-Kirschbaum
40 minutes ago
Sum and product of digits
Sadigly   4
N 44 minutes ago by jasperE3
Source: Azerbaijan NMO 2018
For a positive integer $n$, define $f(n)=n+P(n)$ and $g(n)=n\cdot S(n)$, where $P(n)$ and $S(n)$ denote the product and sum of the digits of $n$, respectively. Find all solutions to $f(n)=g(n)$
4 replies
Sadigly
Sunday at 9:19 PM
jasperE3
44 minutes ago
calculus
youochange   2
N 6 hours ago by tom-nowy
$\int_{\alpha}^{\theta} \frac{d\theta}{\sqrt{cos\theta-cos\alpha}}$
2 replies
youochange
Yesterday at 2:26 PM
tom-nowy
6 hours ago
ISI UGB 2025 P1
SomeonecoolLovesMaths   6
N Yesterday at 5:10 PM by SomeonecoolLovesMaths
Source: ISI UGB 2025 P1
Suppose $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and $| f'(x)| < \frac{1}{2}$ for all $x \in \mathbb{R}$. Show that for some $x_0 \in \mathbb{R}$, $f \left( x_0 \right) = x_0$.
6 replies
SomeonecoolLovesMaths
Sunday at 11:30 AM
SomeonecoolLovesMaths
Yesterday at 5:10 PM
Cute matrix equation
RobertRogo   3
N Yesterday at 2:23 PM by loup blanc
Source: "Traian Lalescu" student contest 2025, Section A, Problem 2
Find all matrices $A \in \mathcal{M}_n(\mathbb{Z})$ such that $$2025A^{2025}=A^{2024}+A^{2023}+\ldots+A$$Edit: Proposed by Marian Vasile (congrats!).
3 replies
RobertRogo
May 9, 2025
loup blanc
Yesterday at 2:23 PM
Integration Bee Kaizo
Calcul8er   63
N Yesterday at 1:50 PM by MS_asdfgzxcvb
Hey integration fans. I decided to collate some of my favourite and most evil integrals I've written into one big integration bee problem set. I've been entering integration bees since 2017 and I've been really getting hands on with the writing side of things over the last couple of years. I hope you'll enjoy!
63 replies
Calcul8er
Mar 2, 2025
MS_asdfgzxcvb
Yesterday at 1:50 PM
Japanese high school Olympiad.
parkjungmin   1
N Yesterday at 1:31 PM by GreekIdiot
It's about the Japanese high school Olympiad.

If there are any students who are good at math, try solving it.
1 reply
parkjungmin
Sunday at 5:25 AM
GreekIdiot
Yesterday at 1:31 PM
Already posted in HSO, too difficult
GreekIdiot   0
Yesterday at 12:37 PM
Source: own
Find all integer triplets that satisfy the equation $5^x-2^y=z^3$.
0 replies
GreekIdiot
Yesterday at 12:37 PM
0 replies
Square on Cf
GreekIdiot   0
Yesterday at 12:29 PM
Let $f$ be a continuous function defined on $[0,1]$ with $f(0)=f(1)=0$ and $f(t)>0 \: \forall \: t \in (0,1)$. We define the point $X'$ to be the projection of point $X$ on the x-axis. Prove that there exist points $A, B \in C_f$ such that $ABB'A'$ is a square.
0 replies
GreekIdiot
Yesterday at 12:29 PM
0 replies
Japanese Olympiad
parkjungmin   4
N Yesterday at 8:55 AM by parkjungmin
It's about the Japanese Olympiad

I can't solve it no matter how much I think about it.

If there are people who are good at math

Please help me.
4 replies
parkjungmin
May 10, 2025
parkjungmin
Yesterday at 8:55 AM
ISI UGB 2025 P3
SomeonecoolLovesMaths   11
N Yesterday at 8:21 AM by Levieee
Source: ISI UGB 2025 P3
Suppose $f : [0,1] \longrightarrow \mathbb{R}$ is differentiable with $f(0) = 0$. If $|f'(x) | \leq f(x)$ for all $x \in [0,1]$, then show that $f(x) = 0$ for all $x$.
11 replies
SomeonecoolLovesMaths
Sunday at 11:32 AM
Levieee
Yesterday at 8:21 AM
D1020 : Special functional equation
Dattier   3
N Yesterday at 7:57 AM by Dattier
Source: les dattes à Dattier
1) Are there any $(f,g) \in C(\mathbb R,\mathbb R_+)$ increasing with
$$\forall x \in \mathbb R, f(x)(\cos(x)+3/2)+g(x)(\sin(x)+3/2)=\exp(x)$$?

2) Are there any $(f,g) \in C(\mathbb R,\mathbb R_+)$ increasing with
$$\forall x \in \mathbb R, f(x)(\cos(x)+3/2)+g(x)(\sin(x)+3/2)=\exp(x/2)$$?
3 replies
Dattier
Apr 24, 2025
Dattier
Yesterday at 7:57 AM
My problem that I could not find(NT)
Nuran2010   1
N Apr 27, 2025 by Nuran2010
Source: Own
While I was thinking on some other geometry problem, a NT problem came to my mind. Despite some tries(which were mostly order), I could not find a way to solve the problem. As I searched, this problem has never been posted before. Here is the problem.

Find all positive integers $a,b$ such that:
$a+b|2^{ab}+1$

Moreover, I wonder if there is a way to solve the question in this variant:

Find all positive integers $a,b,n$ such that:
$a+b|n^{ab}+1$
1 reply
Nuran2010
Apr 24, 2025
Nuran2010
Apr 27, 2025
My problem that I could not find(NT)
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nuran2010
94 posts
#1 • 1 Y
Y by TDVOLIMPTEAM
While I was thinking on some other geometry problem, a NT problem came to my mind. Despite some tries(which were mostly order), I could not find a way to solve the problem. As I searched, this problem has never been posted before. Here is the problem.

Find all positive integers $a,b$ such that:
$a+b|2^{ab}+1$

Moreover, I wonder if there is a way to solve the question in this variant:

Find all positive integers $a,b,n$ such that:
$a+b|n^{ab}+1$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nuran2010
94 posts
#2 • 3 Y
Y by MuradSafarli, Omerking, TDVOLIMPTEAM
Nuran2010 wrote:
While I was thinking on some other geometry problem, a NT problem came to my mind. Despite some tries(which were mostly order), I could not find a way to solve the problem. As I searched, this problem has never been posted before. Here is the problem.

Find all positive integers $a,b$ such that:
$a+b|2^{ab}+1$

Moreover, I wonder if there is a way to solve the question in this variant:

Find all positive integers $a,b,n$ such that:
$a+b|n^{ab}+1$

Half solution which proves there are infinitely many pairs satisfying this condition in the first part:
Construction:
Click to reveal hidden text.
Proof:
Click to reveal hidden text
Z K Y
N Quick Reply
G
H
=
a