Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Interesting inequality
imnotgoodatmathsorry   1
N 6 minutes ago by Bergo1305
Let $x,y,z > \frac{1}{2}$ and $x+y+z=3$.Prove that:
$\sqrt{x^3+y^3+3xy-1}+\sqrt{y^3+z^3+3yz-1}+\sqrt{z^3+x^3+3zx-1}+\frac{1}{4}(x+5)(y+5)(z+5) \le 60$
1 reply
imnotgoodatmathsorry
an hour ago
Bergo1305
6 minutes ago
how can I solve this FE
Jackson0423   3
N 6 minutes ago by maromex

Let \( f : \mathbb{R} \to \mathbb{R} \) be a function that satisfies the following equation for all real numbers \( x \):
\[
f(x^2 + x + 3) + 2f(x^2 - 3x + 5) = 6x^2 - 10x + 17.
\]Find the value of \( f(100) \).
3 replies
Jackson0423
22 minutes ago
maromex
6 minutes ago
every lucky set of values {a_1,a_2,..,a_n} satisfies a_1+a_2+...+a_n >n2^{n-1}
parmenides51   6
N 12 minutes ago by jonh_malkovich
Source: 2020 International Olympiad of Metropolises P3
Let $n>1$ be a given integer. The Mint issues coins of $n$ different values $a_1, a_2, ..., a_n$, where each $a_i$ is a positive integer (the number of coins of each value is unlimited). A set of values $\{a_1, a_2,..., a_n\}$ is called lucky, if the sum $a_1+ a_2+...+ a_n$ can be collected in a unique way (namely, by taking one coin of each value).
(a) Prove that there exists a lucky set of values $\{a_1, a_2, ..., a_n\}$ with $$a_1+ a_2+...+ a_n < n \cdot 2^n.$$(b) Prove that every lucky set of values $\{a_1, a_2,..., a_n\}$ satisfies $$a_1+ a_2+...+ a_n >n \cdot 2^{n-1}.$$
Proposed by Ilya Bogdanov
6 replies
parmenides51
Dec 19, 2020
jonh_malkovich
12 minutes ago
Divisibilty...
Sadigly   3
N 14 minutes ago by Jackson0423
Source: Azerbaijan Junior MO 2025 P2
Find all $4$ consecutive even numbers, such that the square of their product divides the sum of their squares.
3 replies
Sadigly
23 minutes ago
Jackson0423
14 minutes ago
A strange NT problem
flower417477   0
14 minutes ago
Source: unknown
$p$ is a given prime number.$A=\{a_1,a_2,\cdots,a_{p-1}\}$ is a set which $\prod\limits_{i=1}^{p-1}a_i\equiv\frac{p-1}{2}\pmod p$.
Prove that there're at least $\frac{p-1}{2}$ non-empty subsets $B$ of $A$ such that $\sum\limits_{b\in B}b\equiv 1\pmod p$
0 replies
flower417477
14 minutes ago
0 replies
combi/nt
blug   0
33 minutes ago
Prove that every positive integer $n$ can be written in the form
$$n=2^{a_1}3^{b_1}+2^{a_2}3^{b_2}+..., $$where $a_i, b_j$ are non negative integers, such that
$$2^x3^y\nmid 2^z3^t$$for every $x, y, z, t$.
0 replies
blug
33 minutes ago
0 replies
Interesting inequalities
sqing   2
N 39 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 0 , a(b+c)=k.$ Prove that
$$\frac{1}{a+1}+\frac{2}{b+1}+\frac{1}{c+1}\geq  \frac{4\sqrt{k}-6}{ k-2}$$Where $5\leq  k\in N^+.$
Let $ a,b,c\geq 0 , a(b+c)=9.$ Prove that
$$\frac{1}{a+1}+\frac{2}{b+1}+\frac{1}{c+1}\geq \frac{6}{7}$$
2 replies
sqing
2 hours ago
sqing
39 minutes ago
Find smallest value of (x^2 + y^2 + z^2)/(xyz)
orl   7
N an hour ago by Bryan0224
Source: CWMO 2001, Problem 4
Let $ x, y, z$ be real numbers such that $ x + y + z \geq xyz$. Find the smallest possible value of $ \frac {x^2 + y^2 + z^2}{xyz}$.
7 replies
orl
Dec 27, 2008
Bryan0224
an hour ago
easy substitutions for a functional in reals
Circumcircle   9
N an hour ago by Bardia7003
Source: Kosovo Math Olympiad 2025, Grade 11, Problem 2
Find all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ with the property that for every real numbers $x$ and $y$ it holds that
$$f(x+yf(x+y))=f(x)+f(xy)+y^2.$$
9 replies
Circumcircle
Nov 16, 2024
Bardia7003
an hour ago
writing words around circle, two letters
jasperE3   1
N an hour ago by pi_quadrat_sechstel
Source: VJIMC 2000 2.2
If we write the sequence $\text{AAABABBB}$ along the perimeter of a circle, then every word of the length $3$ consisting of letters $A$ and $B$ (i.e. $\text{AAA}$, $\text{AAB}$, $\text{ABA}$, $\text{BAB}$, $\text{ABB}$, $\text{BBB}$, $\text{BBA}$, $\text{BAA}$) occurs exactly once on the perimeter. Decide whether it is possible to write a sequence of letters from a $k$-element alphabet along the perimeter of a circle in such a way that every word of the length $l$ (i.e. an ordered $l$-tuple of letters) occurs exactly once on the perimeter.
1 reply
jasperE3
Jul 27, 2021
pi_quadrat_sechstel
an hour ago
Arithmetic Sequence of Products
GrantStar   19
N an hour ago by OronSH
Source: IMO Shortlist 2023 N4
Let $a_1, \dots, a_n, b_1, \dots, b_n$ be $2n$ positive integers such that the $n+1$ products
\[a_1 a_2 a_3 \cdots a_n, b_1 a_2 a_3 \cdots a_n, b_1 b_2 a_3 \cdots a_n, \dots, b_1 b_2 b_3 \cdots b_n\]form a strictly increasing arithmetic progression in that order. Determine the smallest possible integer that could be the common difference of such an arithmetic progression.
19 replies
GrantStar
Jul 17, 2024
OronSH
an hour ago
Inequality Involving Complex Numbers with Modulus Less Than 1
tom-nowy   0
an hour ago
Let $x,y,z$ be complex numbers such that $|x|<1, |y|<1,$ and $|z|<1$.
Prove that $$ |x+y+z|^2 +3>|xy+yz+zx|^2+3|xyz|^2 .$$
0 replies
1 viewing
tom-nowy
an hour ago
0 replies
Inequality
nguyentlauv   2
N an hour ago by nguyentlauv
Source: Own
Let $a,b,c$ be positive real numbers such that $ab+bc+ca=3$ and $k\ge 0$, prove that
$$\frac{\sqrt{a+1}}{b+c+k}+\frac{\sqrt{b+1}}{c+a+k}+\frac{\sqrt{c+1}}{a+b+k} \geq \frac{3\sqrt{2}}{k+2}.$$
2 replies
nguyentlauv
May 6, 2025
nguyentlauv
an hour ago
japan 2021 mo
parkjungmin   0
an hour ago

The square box question

Is there anyone who can release it
0 replies
parkjungmin
an hour ago
0 replies
Two circles ...
Rushil   9
N Jan 5, 2020 by aops29
Source: INMO 1996 Problem 2
Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.
9 replies
Rushil
Oct 6, 2005
aops29
Jan 5, 2020
Two circles ...
G H J
Source: INMO 1996 Problem 2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rushil
1592 posts
#1 • 3 Y
Y by Adventure10, Mango247, Mango247
Let $C_1$ and $C_2$ be two concentric circles in the plane with radii $R$ and $3R$ respectively. Show that the orthocenter of any triangle inscribed in circle $C_1$ lies in the interior of circle $C_2$. Conversely, show that every point in the interior of $C_2$ is the orthocenter of some triangle inscribed in $C_1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Arne
3660 posts
#2 • 2 Y
Y by Adventure10, Mango247
Let $O$, the center of $C_1$ and $C_2$, be the origin - I am going to use vectors. Let $ABC$ be any triangle inscribed in $C_1$ and write $\mathbf{a} = \overline{OA}$, $\mathbf{b} = \overline{OB}$ and $\mathbf{c} = \overline{OC}$. Then $|\mathbf{a}| = |\mathbf{b}| = |\mathbf{c}| = R$. Also, the orthocentre $H$ of $\Delta ABC$ is given by $\mathbf{h} = \overline{OH} = \mathbf{a} + \mathbf{b} + \mathbf{c}$. By the triangle inequality, we have \[ |\mathbf{h}| = |\mathbf{a} + \mathbf{b} + \mathbf{c}| \leq |\mathbf{a}| + |\mathbf{b}| + |\mathbf{c}|= 3R, \] and it follows that $H$ lies inside the circle with centre $O$ and radius $3R$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jensen
572 posts
#3 • 2 Y
Y by Adventure10, Mango247
nice solution Arne,you are cool. :D
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rijul saini
904 posts
#4 • 2 Y
Y by Adventure10, Mango247
Anyone for pure geometry or coordinate geometry?
Seems quite tough .....
The problem with of is that i havent yet learnt vector use in geometry.........
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rijul saini
904 posts
#5 • 2 Y
Y by Adventure10, Mango247
After the last post , I realised that a very short and trivial solution exists using trigonometry.....

It is a well known relation that

$ OH = R \sqrt{1-8cosAcosBcosC}$

where O is the circumcentre of a triangle, H is the orthocentre, R is the circumradius, and A,B,C the angles of the triangle.

Since $ cosA \cdot cosB \cdot cosC= cos(180-(B+C)) \cdot cos B \cdot  =-cos(B+C) \cdot cosB \cdot cosC < -1$ since the maximumum value of the cos function is $ 1$ which exists at angle $ 0$ not possible....

Therefore
$ OH = R \sqrt{1-8cosAcosBcosC} < R \sqrt{1+8} = 3R$

This proves the first part.....

For the second part....
Since $ cosAcosBcosC$ assumes every value between $ -1$ and $ \frac{1}{8}$ with equality existing only in the latter.....
Therefore every point in the interior of $ C_2$ is the orthocenter of some triangle inscribed in $ C_1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rijul saini
904 posts
#6 • 1 Y
Y by Adventure10
It is a well known relation that

$ OH = R \sqrt {1 - 8cosAcosBcosC}$

where O is the circumcentre of a triangle, H is the orthocentre, R is the circumradius, and A,B,C the angles of the triangle.

$ cosA \cdot cosB \cdot cosC = cos(180 - (B + C)) \cdot cos B \cdot cos C \\
= - cos(B + C) \cdot cosB \cdot cosC > - 1$
since the maximum value of the cos function is $ 1$ which exists at angle $ 0$ not possible....

Therefore
$ OH = R \sqrt {1 - 8cosAcosBcosC} < R \sqrt {1 + 8} = 3R$

This proves the first part.....

For the second part....
Since $ cosAcosBcosC$ assumes every value between $ - 1$ and $ \frac {1}{8}$ with equality existing only in the latter.....
Therefore every point on a radius of the circle is the orthocentre of some triangle in $ C_1$...So rotating those triangles we get the required statement of the proof...
Therefore every point in the interior of $ C_2$ is the orthocenter of some triangle inscribed in $ C_1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Pascal96
124 posts
#7 • 3 Y
Y by SahilAgrawal753, Adventure10, Mango247
Here's a solution using pure geometry for the first part:
Use the relation OH = 3OG, and the fact that G (the centroid) must lie inside the triangle, and hence inside the circle. It follows that H must lie inside the circle of radius 3R
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
oneplusone
1459 posts
#8 • 1 Y
Y by Adventure10
My first part is same as Pascal96's solution.

For the second part (without trigo), let $O$ be the center of both circles, and $HO$ intersects $C_1$ at $A$ and $X$, where $AH\leq AX$. Note that the midpoint of $HX$ lies in $C_1$, so the perpendicular bisector of $HX$ intersects $C_1$ at 2 points $B,C$. Then $H$ is the orthocenter of $\triangle ABC$, not hard to show.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sankha012
147 posts
#9 • 1 Y
Y by Adventure10
another proof for the second part:
Let $C_1$ be the unit circle in Argand Plane and the let the positive x-axis be along $OH$ where $O$ is the origin and $H$ is an arbitrary point inside $C_2$.We have $h=|OH|=k$(say).Using the fact $h=a+b+c$ it suffices to prove that k can be written as $e^{ix}+e^{iy}+e^{iz}$.This is equivalent to \[\cos x+\cos y+\cos z=k\] and \[\sin x+\sin y+\sin z=0\]Choosing $\cos x=\cos y=\frac{k-1}{2}$(this is possible because $k<3$),$\cos z=1$ and $x=-y$ we get a triangle.
$QED$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
aops29
452 posts
#10 • 2 Y
Y by AlastorMoody, Adventure10
Solution
Z K Y
N Quick Reply
G
H
=
a