Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Find smallest value of (x^2 + y^2 + z^2)/(xyz)
orl   8
N 5 minutes ago by sqing
Source: CWMO 2001, Problem 4
Let $ x, y, z$ be real numbers such that $ x + y + z \geq xyz$. Find the smallest possible value of $ \frac {x^2 + y^2 + z^2}{xyz}$.
8 replies
+1 w
orl
Dec 27, 2008
sqing
5 minutes ago
Painted cells
Titibuuu   0
13 minutes ago
Source: Mock P3
A \( 2021 \times 2021 \) grid has \( k \) cells painted such that the following condition holds:
For every painted cell, at least one of its \emph{vertices} is also a vertex of \emph{another} painted cell.
Find the maximum possible value of \( k \).
0 replies
Titibuuu
13 minutes ago
0 replies
junior perpenicularity, 2 circles related
parmenides51   3
N 15 minutes ago by LeYohan
Source: Greece Junior Math Olympiad 2024 p2
Consider an acute triangle $ABC$ and it's circumcircle $\omega$. With center $A$, we construct a circle $\gamma$ that intersects arc $AB$ of circle $\omega$ , that doesn't contain $C$, at point $D$ and arc $AC$ , that doesn't contain $B$, at point $E$. Suppose that the intersection point $K$ of lines $BE$ and $CD$ lies on circle $\gamma$. Prove that line $AK$ is perpendicular on line $BC$.
3 replies
parmenides51
Mar 2, 2024
LeYohan
15 minutes ago
Sequence
Titibuuu   0
16 minutes ago
Source: Mock P2

Let \( a_1 = a \), and for all \( n \geq 1 \), define the sequence \( \{a_n\} \) by the recurrence
\[
a_{n+1} = a_n^2 + 1
\]Prove that there is no natural number \( n \) such that
\[
\prod_{k=1}^{n} \left( a_k^2 + a_k + 1 \right)
\]is a perfect square.
0 replies
Titibuuu
16 minutes ago
0 replies
Coolabra
Titibuuu   0
17 minutes ago
Source: Mock P1
Let \( a, b, c \) be distinct real numbers such that
\[
a + b + c + \frac{1}{abc} = \frac{19}{2}
\]Find the maximum possible value of \( a \).
0 replies
Titibuuu
17 minutes ago
0 replies
Inspired by Bet667
sqing   5
N 19 minutes ago by sqing
Source: Own
Let $ a,b $ be a real numbers such that $a^3+kab+b^3\ge a^4+b^4.$Prove that
$$1-\sqrt{k+1} \leq  a+b\leq 1+\sqrt{k+1} $$Where $ k\geq 0. $
5 replies
sqing
Thursday at 1:03 PM
sqing
19 minutes ago
Inspired by Kosovo 2010
sqing   2
N 33 minutes ago by sqing
Source: Own
Let $ a,b>0  , a+b\leq k $. Prove that
$$\left(1+\frac{1}{a(b+1)}\right)\left(1+\frac{1}{b(a+1)}\right)\geq\left(1+\frac{4}{k(k+2)}\right)^2$$$$\left(1+\frac {a}{b(a+1)}\right)\left(1+\frac {b}{a(b+1)}\right) \geq\left(1+\frac{2}{k+2}\right)^2$$Let $ a,b>0  , a+b\leq 2 $. Prove that
$$\left(1+\frac{1}{a(b+1)}\right)\left(1+\frac{1}{b(a+1)}\right)\geq \frac{9}{4} $$$$\left(1+\frac {a}{b(a+1)}\right)\left(1+\frac {b}{a(b+1)}\right) \geq \frac{9}{4} $$
2 replies
sqing
Yesterday at 3:56 AM
sqing
33 minutes ago
Find all real numbers
sqing   6
N 33 minutes ago by sqing
Source: IMOC 2021 A1
Find all real numbers x that satisfies$$\sqrt{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}+\sqrt{1-\frac{1}{\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}}}=x.$$2021 IMOC Problems
6 replies
sqing
Aug 11, 2021
sqing
33 minutes ago
IMO 2016 Problem 4
termas   54
N an hour ago by OronSH
Source: IMO 2016 (day 2)
A set of positive integers is called fragrant if it contains at least two elements and each of its elements has a prime factor in common with at least one of the other elements. Let $P(n)=n^2+n+1$. What is the least possible positive integer value of $b$ such that there exists a non-negative integer $a$ for which the set $$\{P(a+1),P(a+2),\ldots,P(a+b)\}$$is fragrant?
54 replies
termas
Jul 12, 2016
OronSH
an hour ago
Cyclic equality implies equal sum of squares
blackbluecar   33
N 2 hours ago by Vivaandax
Source: 2021 Iberoamerican Mathematical Olympiad, P4
Let $a,b,c,x,y,z$ be real numbers such that

\[ a^2+x^2=b^2+y^2=c^2+z^2=(a+b)^2+(x+y)^2=(b+c)^2+(y+z)^2=(c+a)^2+(z+x)^2 \]
Show that $a^2+b^2+c^2=x^2+y^2+z^2$.
33 replies
blackbluecar
Oct 21, 2021
Vivaandax
2 hours ago
Interesting functional equation with geometry
User21837561   3
N Yesterday at 6:34 PM by Double07
Source: BMOSL 2024 G7
For an acute triangle $ABC$, let $O$ be the circumcentre, $H$ be the orthocentre, and $G$ be the centroid.
Let $f:\pi\rightarrow\mathbb R$ satisfy the following condition:
$f(A)+f(B)+f(C)=f(O)+f(G)+f(H)$
Prove that $f$ is constant.
3 replies
User21837561
Yesterday at 8:14 AM
Double07
Yesterday at 6:34 PM
greatest volume
hzbrl   1
N Yesterday at 6:32 PM by hzbrl
Source: purple comet
A large sphere with radius 7 contains three smaller balls each with radius 3 . The three balls are each externally tangent to the other two balls and internally tangent to the large sphere. There are four right circular cones that can be inscribed in the large sphere in such a way that the bases of the cones are tangent to all three balls. Of these four cones, the one with the greatest volume has volume $n \pi$. Find $n$.
1 reply
hzbrl
Thursday at 9:56 AM
hzbrl
Yesterday at 6:32 PM
IMO 2010 Problem 3
canada   59
N Yesterday at 6:23 PM by pi271828
Find all functions $g:\mathbb{N}\rightarrow\mathbb{N}$ such that \[\left(g(m)+n\right)\left(g(n)+m\right)\] is a perfect square for all $m,n\in\mathbb{N}.$

Proposed by Gabriel Carroll, USA
59 replies
canada
Jul 7, 2010
pi271828
Yesterday at 6:23 PM
Functional equation
Nima Ahmadi Pour   100
N Yesterday at 5:11 PM by jasperE3
Source: ISl 2005, A2, Iran prepration exam
We denote by $\mathbb{R}^+$ the set of all positive real numbers.

Find all functions $f: \mathbb R^ + \rightarrow\mathbb R^ +$ which have the property:
\[f(x)f(y)=2f(x+yf(x))\]
for all positive real numbers $x$ and $y$.

Proposed by Nikolai Nikolov, Bulgaria
100 replies
Nima Ahmadi Pour
Apr 24, 2006
jasperE3
Yesterday at 5:11 PM
IV Lusophon Mathematical Olympiad 2014 - Problem 4
Kowalks   1
N May 21, 2024 by iMqther_
From a point $K$ of a circle, a chord $KA$ (arc $AK$ is greather than $90^{o}$) and a tangent $l$ are drawn. The line that passes through the center of the circle and that is perpendicular to the radius $OA$, intersects $KA$ at $B$ and $l$ at $C$. Show that $KC = BC$.
1 reply
Kowalks
Dec 28, 2014
iMqther_
May 21, 2024
IV Lusophon Mathematical Olympiad 2014 - Problem 4
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kowalks
19 posts
#1 • 1 Y
Y by Adventure10
From a point $K$ of a circle, a chord $KA$ (arc $AK$ is greather than $90^{o}$) and a tangent $l$ are drawn. The line that passes through the center of the circle and that is perpendicular to the radius $OA$, intersects $KA$ at $B$ and $l$ at $C$. Show that $KC = BC$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
iMqther_
64 posts
#2
Y by
What a very nice and simple problem.

Let $D$ be a point in the circumference such that $DA$ is diameter of the circle and $E$ the point on the perpendicular of $OA$ that lies on the circle.
Since $DA$ is a diameter we have $ \angle DKA=90^\circ$ and notice $EO\perp DA$ $\implies $$\angle DOB=90^\circ$ so $DKOB$ is cyclic $\implies$ $\angle ODK= \angle KBC$

Now since $l$ is tangent at $K$ we must have $\angle ADK= \angle AKC$ because they're looking at the same arc (small arc $KA$). So we have $\angle CKB= \angle CBK$$ \implies$ $\triangle CBK$ is isosceles with $KC=BC$. $Q.E.D $ $ \square$.
This post has been edited 1 time. Last edited by iMqther_, May 21, 2024, 2:56 PM
Reason: typo
Z K Y
N Quick Reply
G
H
=
a