Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Fake number theory
Davdav1232   4
N a minute ago by NO_SQUARES
Source: Israel TST p1
For a positive integer \( n \geq 2 \), does there exist positive integer solutions to the following system of equations?

\[
\begin{cases} 
a^n - 2b^n = 1, \\
b^n - 2c^n = 1.
\end{cases}
\]
4 replies
Davdav1232
Dec 19, 2024
NO_SQUARES
a minute ago
Inequality, inequality, inequality...
Assassino9931   2
N 5 minutes ago by pooh123
Source: Al-Khwarizmi Junior International Olympiad 2025 P6
Let $a,b,c$ be real numbers such that \[ab^2+bc^2+ca^2=6\sqrt{3}+ac^2+cb^2+ba^2.\]Find the smallest possible value of $a^2 + b^2 + c^2$.

Binh Luan and Nhan Xet, Vietnam
2 replies
Assassino9931
4 hours ago
pooh123
5 minutes ago
Interesting inequalities
sqing   1
N 19 minutes ago by sqing
Source: Own
Let $ a,b,c\geq 0 , (a+k )(b+c)=k+1.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2k-3+2\sqrt{k+1}}{3k-1}$$Where $ k\geq \frac{2}{3}.$
Let $ a,b,c\geq 0 , (a+1)(b+c)=2.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq 2\sqrt{2}-1$$Let $ a,b,c\geq 0 , (a+3)(b+c)=4.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{7}{4}$$Let $ a,b,c\geq 0 , (3a+2)(b+c)= 5.$ Prove that
$$\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\geq  \frac{2(2\sqrt{15}-5)}{3}$$
1 reply
+1 w
sqing
20 minutes ago
sqing
19 minutes ago
Prime sums of pairs
Assassino9931   1
N 24 minutes ago by Nuran2010
Source: Al-Khwarizmi Junior International Olympiad 2025 P5
Sevara writes in red $8$ distinct positive integers and then writes in blue the $28$ sums of each two red numbers. At most how many of the blue numbers can be prime?

Marin Hristov, Bulgaria
1 reply
+1 w
Assassino9931
4 hours ago
Nuran2010
24 minutes ago
Is this true?
Entrepreneur   1
N an hour ago by revol_ufiaw
Define the $\text{\textcolor{red}{Pell Sequence}}$ as $$P_0=0,P_1=1,\;P_{n+2}=2P_{n+1}+P_n.$$Prove that $4P_{2k}^2+1$ is prime for all $k\in\mathbb N.$
1 reply
Entrepreneur
4 hours ago
revol_ufiaw
an hour ago
Unknown triangle area
smartvong   1
N 2 hours ago by smartvong
The diagram shows a convex quadrilateral $ABCD$. The points $E$ and $F$ divide $AB$ into three equal parts while the points $G$ and $H$ divide $CD$ into three equal parts. The line segments $AH$ and $ED$ intersect at $I$. The line segments $CF$ and $BG$ intersect at $J$. Given that the areas of the triangles $AID$, $EHI$ and $FJG$ are $154$, $112$, and $99$ respectively, find the area of the triangle $BJC$.

IMAGE
1 reply
smartvong
May 8, 2025
smartvong
2 hours ago
Geometry
AlexCenteno2007   4
N 2 hours ago by Raul_S_Baz
Let ABC be an acute triangle and let D, E and F be the feet of the altitudes from A, B and C respectively. The straight line EF and the circumcircle of ABC intersect at P such that F is between E and P, the straight lines BP and DF intersect at Q. Show that if ED = EP then CQ and DP are parallel.
4 replies
AlexCenteno2007
Apr 28, 2025
Raul_S_Baz
2 hours ago
Inequalities
sqing   1
N 2 hours ago by sqing
Let $ 0\leq x,y,z\leq 2. $ Prove that
$$-48\leq (x-yz)( 3y-zx)(z-xy)\leq 9$$$$-144\leq (3x-yz)(y-zx)(3z-xy)\leq\frac{81}{64}$$$$-144\leq (3x-yz)(2y-zx)(3z-xy)\leq\frac{81}{16}$$
1 reply
sqing
Yesterday at 8:50 AM
sqing
2 hours ago
Calculate the distance AD
MTA_2024   2
N 3 hours ago by WheatNeat
A semi-circle is inscribed in a quadrilateral $ABCD$. The center $O$ of the semi-circle is the midpoint of segment $AD$. We have $AB=9$ and $CD=16$.
Calculate the distance $AD$.
2 replies
MTA_2024
Yesterday at 3:50 PM
WheatNeat
3 hours ago
Concurrent in a pyramid
vanstraelen   0
Today at 7:13 AM

Given a pyramid $(T,ABCD)$ where $ABCD$ is a parallelogram.
The intersection of the diagonals of the base is point $S$.
Point $A$ is connected to the midpoint of $[CT]$, point $B$ to the midpoint of $[DT]$,
point $C$ to the midpoint of $[AT]$ and point $D$ to the midpoint of $[BT]$.
a) Prove: the four lines are concurrent in a point $P$.
b) Calulate $\frac{TS}{TP}$.
0 replies
vanstraelen
Today at 7:13 AM
0 replies
A problem with a rectangle
Raul_S_Baz   16
N Today at 7:09 AM by Raul_S_Baz
On the sides AB and AD of the rectangle ABCD, points M and N are taken such that MB = ND. Let P be the intersection of BN and CD, and Q be the intersection of DM and CB. How can we prove that PQ || MN?
IMAGE
16 replies
Raul_S_Baz
Apr 26, 2025
Raul_S_Baz
Today at 7:09 AM
Number of real roots
girishpimoli   5
N Today at 6:21 AM by mrgenius000
If $f(x)=x^2-2x$. Then number of real roots of $f(f(f(f(x))))=3$
5 replies
girishpimoli
Today at 3:44 AM
mrgenius000
Today at 6:21 AM
Proving that the line passes through the midpoint.
MTA_2024   2
N Today at 5:00 AM by Royal_mhyasd
Let $ABC$ be a triangle of orthocenter $H$. The circle of diameter $AC$ and the circumcircle of triangle $AHB$ intersect a second time in $K$.
Prove that the line $(CK)$ passes through the midpoint of segment $HB$.
2 replies
MTA_2024
May 7, 2025
Royal_mhyasd
Today at 5:00 AM
Square number
linkxink0603   4
N Today at 3:29 AM by pooh123
Find m is positive interger such that m^4+3^m is square number
4 replies
linkxink0603
Yesterday at 11:20 AM
pooh123
Today at 3:29 AM
domino question
kjhgyuio   0
Apr 21, 2025
........
0 replies
kjhgyuio
Apr 21, 2025
0 replies
domino question
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
kjhgyuio
62 posts
#1
Y by
........
Attachments:
Z K Y
N Quick Reply
G
H
=
a