We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
No topics here!
Interesting inequality
sqing   1
N Mar 21, 2025 by sqing
Source: Own
Let $ a,b,c\geq \frac{1}{3}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq 17+2\sqrt{73}$$Let $ a,b,c\geq \frac{1}{2}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{469+115\sqrt{17}}{32}$$Let $ a,b,c\geq \frac{1}{5}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{569+34\sqrt{281}}{25}$$
1 reply
sqing
Mar 21, 2025
sqing
Mar 21, 2025
Interesting inequality
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41299 posts
#1
Y by
Let $ a,b,c\geq \frac{1}{3}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq 17+2\sqrt{73}$$Let $ a,b,c\geq \frac{1}{2}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{469+115\sqrt{17}}{32}$$Let $ a,b,c\geq \frac{1}{5}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq \frac{569+34\sqrt{281}}{25}$$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sqing
41299 posts
#2
Y by
Let $ a,b,c\geq \frac{71}{90}$ and $ a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+8  . $ Prove that
$$ ab+bc +ca\leq 27 $$
Z K Y
N Quick Reply
G
H
=
a