Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
angle chasing with 2 midpoints, equal angles given and wanted
parmenides51   4
N 22 minutes ago by Blackbeam999
Source: Ukrainian Geometry Olympiad 2017, IX p1, X p1, XI p1
In the triangle $ABC$, ${{A}_{1}}$ and ${{C}_{1}} $ are the midpoints of sides $BC $ and $AB$ respectively. Point $P$ lies inside the triangle. Let $\angle BP {{C}_{1}} = \angle PCA$. Prove that $\angle BP {{A}_{1}} = \angle PAC $.
4 replies
parmenides51
Dec 11, 2018
Blackbeam999
22 minutes ago
Determine all the 'good' numbers
April   4
N 24 minutes ago by DottedCaculator
Source: CGMO 2004 P1
We say a positive integer $ n$ is good if there exists a permutation $ a_1, a_2, \ldots, a_n$ of $ 1, 2, \ldots, n$ such that $ k + a_k$ is perfect square for all $ 1\le k\le n$. Determine all the good numbers in the set $ \{11, 13, 15, 17, 19\}$.
4 replies
April
Dec 27, 2008
DottedCaculator
24 minutes ago
Classical factorial number theory
Orestis_Lignos   21
N 31 minutes ago by MIC38
Source: JBMO 2023 Problem 1
Find all pairs $(a,b)$ of positive integers such that $a!+b$ and $b!+a$ are both powers of $5$.

Nikola Velov, North Macedonia
21 replies
Orestis_Lignos
Jun 26, 2023
MIC38
31 minutes ago
m^4+3^m is a perfect square number
Havu   4
N an hour ago by ReticulatedPython
Find a positive integer m such that $m^4+3^m$ is a perfect square number.
4 replies
Havu
an hour ago
ReticulatedPython
an hour ago
No more topics!
Functional equation
Amin12   17
N Apr 30, 2025 by bin_sherlo
Source: Iran 3rd round 2017 first Algebra exam
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
17 replies
Amin12
Aug 7, 2017
bin_sherlo
Apr 30, 2025
Functional equation
G H J
G H BBookmark kLocked kLocked NReply
Source: Iran 3rd round 2017 first Algebra exam
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Amin12
16 posts
#1 • 3 Y
Y by yayitsme, Adventure10, Mango247
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
This post has been edited 2 times. Last edited by Amin12, Aug 7, 2017, 8:40 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Vietnamisalwaysinmyheart
311 posts
#2 • 4 Y
Y by gemcl, Jonathankirk, Adventure10, Mango247
Here is my solution:
Click to reveal hidden text
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ankoganit
3070 posts
#3 • 3 Y
Y by Adventure10, Mango247, math_comb01
Setting $x\mapsto \frac1x$ in the given equation gives $$f\left(f(x)+\frac1y\right)=x+\frac1{f(y)}.$$Call this statement $P(x,y)$. This immediately gives $f$ is injective.

Now comparing $P(x,\tfrac1{f(y)})$ and $P(y,\tfrac1{f(x)})$ gives $$\frac{1}{f\left(\frac1{f(x)}\right)}-\frac{1}{f\left(\frac1{f(y)}\right)}=x-y\implies \frac{1}{f\left(\frac1{f(x)}\right)}=x+k\implies f\left(\frac1{f(x)}\right)=\frac1{x+k}.$$Here $k$ is some constant. Also, comparing $P(\tfrac1{f(x)},y)$ and $P(\tfrac1{f(y)},x)$ and using injectivity, we have $$f\left(f\left(\frac1{f(x)}\right)+\frac1y\right)=f\left(f\left(\frac1{f(y)}\right)+\frac1x\right)\implies f\left(\frac1{f(x)}\right)+\frac1y=f\left(\frac1{f(y)}\right)+\frac1x\implies f\left(\frac1{f(x)}\right)=\frac1x+k'.$$Here $k'$ is another constant. Now this gives $\tfrac1{x+k}=\tfrac1x+k'$ holds for all $x\in\mathbb R^+$, which forces $k=k'=0$. So in fact $f\left(\frac{1}{f(x)}\right)=\frac1x.$ Now $P(\tfrac{1}{f(x)})$ gives $$f\left(\frac1x+\frac1y\right)=\frac1{f(x)}+\frac1{f(y)}.$$Call this new statement $Q(x,y)$.
Now $Q(x,x)$ gives $f(\tfrac2x)=\tfrac2{f(x)}\;(\star).$ Comparing $Q(\tfrac{xy}{x+y},1)$ and $Q(x,\tfrac{y}{y+1})$ and mutilplying y $2$ gives $$\frac2{f(1)}+\frac{2}{f\left(\frac{xy}{x+y}\right)}=\frac{2}{f\left(\frac y{y+1}\right)}+\frac2{f(x)}.$$Using $(\star)$ in each of these terms, we have $f(2)+f\left(\tfrac2x+\tfrac2y\right)=f\left(2+\tfrac{2}{y}\right)+f\left(\tfrac2x\right)$, and replacing $x\mapsto 2x,y\mapsto 2y$, we get $$f(2)+f\left(\frac1x+\frac1y\right)=f\left(2+\frac{1}{y}\right)+f\left(\frac1x\right).$$Now we use the statements $Q(x,y),Q(\tfrac12,y)$ to simplify that into $$f(2)+\frac1{f(x)}+\frac{1}{f(y)}=\frac1{f(\tfrac12)}+\frac1{f(y)}+f\left(\frac1x\right)\implies f\left(\frac1x\right)-\frac1{f(x)}=f(2)-\frac1{f(\tfrac12)}.$$Setting $x=2$, there, we get $f(\tfrac12)+\tfrac1{f(1/2)}=f(2)+\frac1{f(2)}$, and since $f(2)\ne f(1/2)$ because of injectivity, we get $f(2)=\frac1{f(1/2)}$, which in turn implies $f\left(\frac1x\right)=\frac1{f(x)}.$

Now $Q(x,y)$ can be written as $f(\tfrac1x+\tfrac1y)=f(\tfrac1x)+f(\tfrac1y)$, which becomes Cauchy's equation after setting $x\mapsto 1/x,y\mapsto 1/y$. Since the codomain of $f$ is bounded from below, we must have $f(x)=cx$, and only $f(x)=x$ fits.

Edit: Sniped darn :furious:
This post has been edited 2 times. Last edited by Ankoganit, Aug 7, 2017, 3:10 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TLP.39
778 posts
#4 • 2 Y
Y by Adventure10, Mango247
Another solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Kirilbangachev
71 posts
#5 • 23 Y
Y by TLP.39, Ankoganit, k.vasilev, Xurshid.Turgunboyev, naw.ngs, gemcl, MahdiTA, Kayak, rmtf1111, e_plus_pi, Sillyguy, ValidName, Aryan-23, Arefe, r_ef, maryam2002, Gaussian_cyber, FAA2533, electrovector, Kamikaze-1, Adventure10, TemetNosce, NicoN9
We can rewrite it as:
$$\frac{1}{x}+\frac{1}{f(y)}=f(\frac{1}{y}+f(\frac{1}{x})).$$It is clear that we can replace $x$ by $\frac{1}{x}$ and get:
$$x+\frac{1}{y}=f(\frac{1}{y}+f(x)).$$Suppose that $x_1>f(x_1)$ for some $x_1.$ Then $(x,y)=(x_1,\frac{1}{x_1-f(x_1)})$ gives us $$x_1=f(x_1)-\frac{1}{f(y)}<f(x_1),$$contradiction. So $\boxed{x \le f(x) \hspace{2mm} \forall x}.$ But this means that
$$x+\frac{1}{f(y)}=f(\frac{1}{y}+f(x))\ge \frac{1}{y}+f(x)\ge \frac{1}{y}+x \Longrightarrow$$$$\frac{1}{f(y)}\ge \frac{1}{y}\Longrightarrow \boxed{y\ge f(y) \hspace{2mm} \forall y}.$$Combining the two boxed results gives us $f(x)=x.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#6 • 3 Y
Y by e_plus_pi, Adventure10, Mango247
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all positive real numbers $x$ and $y$.

Equivalently, $$\frac{1}{x}+\frac{1}{f(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all $x,y>0$. Put $t=\tfrac{1}{x}$ thus $t+\tfrac{1}{f(y)}=f\left(f(t)+\tfrac{1}{y}\right)$ for all $t,y>0$. Observe that as $t \rightarrow \infty$ we see $\mathbb{R}(f)$ has no upper bound. Thus, for any $\varepsilon>0$ it is possible to pick $y$ with $\tfrac{1}{f(y)}<\varepsilon$; hence $ \cup [\tfrac{1}{f(y)}, \infty)$ is a subset of $\mathbb{R}(f)$, consequently $f$ is surjective over $\mathbb{R}^{+}$. If $f(a)=f(b)$ then plugging $t=a$ and $t=b$ subsequently, we conclude $a=b$ or $f$ is injective. Thus, $f$ is a bijection on positive reals.

Now substitute $y=\tfrac{1}{f(z)}$ yielding $$f(f(t)+f(z))=t+\frac{1}{f\left(\frac{1}{f(z)}\right)}$$for all $t,z>0$. Swapping $t,z$ fixes the LHS, hence $\frac{1}{f\left(\frac{1}{f(z)}\right)}=z+C$ for some constant $C$ and all $z>0$. Hence $f(f(t)+f(z))=t+z+C$ for all $t,z>0$. Playing the Devil's trick again, we put $x=f(z)$ in the original equation; so $$\frac{1}{f(z)}+\frac{1}{f(y)}=f\left(\frac{1}{y}+\frac{1}{z+C}\right)$$and swap $y,z$; injectivity of $f$ then yields that $y \mapsto \frac{1}{y}-\frac{1}{y+C}$ is a constant function. Thus, $C=0$ and so $f(f(y)+f(z))=y+z$ for all $y,z>0$. Now plug $x \mapsto f\left(\frac{1}{x}\right)$ in $f\left(\frac{1}{f(x)}\right)=\frac{1}{x}$ to conclude that $f\left(\frac{1}{x}\right)=\frac{1}{f(x)}$ for all $x>0$. Now we immediately get $f(f(x))=x$ for all $x>0$ and so $f(a+b)=f(a)+f(b)$ (putting $a=f(y), b=f(z)$); hence $f$ is additive too. Now $f$ is strictly increasing so if $f(x_0)>x_0$ then $x_0=f(f(x_0)>x_0$ and vice-versa. Thus, $f(x_0)=x_0$ for all $x_0>0$ and $f$ is the identity function. It also works. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
stroller
894 posts
#8 • 2 Y
Y by Adventure10, Mango247
Fix $y$ to note that $f$ is injective and $(\frac{1}{f(y)},\infty) \subseteq f$. Now take $y$ with $f(y) \to \infty$ gives $(0,\infty)  = f$. Therefore $f$ is bijective.
Now note that
$$f(x+\frac{1}{f(y)} + \frac1z) =  f(f(f(x) + 1/y ) + 1/z) = f(x) + 1/y + 1/f(z)$$Replace $z$ by $1/z$ in the above relation and consider symmetric equation with $x,z$ swapped we deduce
$$f(x) = 1/f(1/x) + \underbrace{f(z) - 1/f(1/z)}_c$$Fix $z$ and vary $x$ to get using $f$ bijective that $(c,\infty) = f$ so $c = 0$, i.e. $f(z) = \frac 1 {f(1/z)}$.
Now we rewrite original FE as
$$f(f(x) + y) = x + f(y).$$Replace $x$ by $f(x)$ to get
$$f(f^2(x) + y)  = f(x) + f(y) = f(y) + f(x) = f(f^2(y) + f(x)). \qquad\qquad  \dots \dots (1)$$Now use injectivity to get
$f^2(x) = \underbrace{f^2(y) - y}_{c'} + x$. Taking a similar consideration as before with $c$ we see that $c' = 0$. Therefore $f(x)^2 = x$, so $(1)$ becomes Cauchy FE. Extend $f(x)$ by $f(-x)  = -f(x)$ for all $x < 0$ and note that extended $f$ satisfies Cauchy on the reals, and $f(x) > 0$ for all $x > 0$, so $f$ is linear, from which we conclude that $f(x) = x$, as desired.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
e_plus_pi
756 posts
#9 • 1 Y
Y by Adventure10
Enjoyed this a whole lot :P
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f\left(\frac{1}{y}+f\left(\frac{1}{x}\right)\right)$$for all positive real numbers $x$ and $y$.

We begin our solution by claiming that $\boxed{f(x) \equiv x \forall \ x \in \mathbb{R^+}}$ is the only solution to the given equation. Note that it indeed works.
$  $

Now, let $P(x,y)$ denote the given assertion.
$(\star) P \left(\frac{1}{x}, \frac{1}{f(y)}\right) : $
\begin{align*}
x + \frac{1}{f(\frac{1}{f(y)})} & = f(f(y) + f(x)) \\
                                                 & = f(f(x) + f(y)) \\
                                                 & = y + \frac{1}{f (\frac{1}{f(x)})} \\
\end{align*}Therefore, let $h(x) =\frac{1}{f \left(\frac{1}{f(x)}\right)} $. Then we have $h(x) - h(y) = x - y \implies h(x) = x + c \forall x \in \mathbb{R^+}$ and some $c \in \mathbb{R}$.
So, $f(\frac{1}{f(y)}) = \frac{1}{y+c} \implies f$ is injective . Now $P(f(x) , y) ; P(f(y),x)$ imply that $c = 0$. So $f(\frac{1}{f(y)}) = \frac{1}{y}$ and hence $f$ is bijective .
Thus, $P(f(x),y ) \implies \frac{1}{f(x)} + \frac{1}{f(y)} = f\left(\frac{1}{x} + \frac{1}{y} \right)$.
$  $
Call the last equation $Q\left(\frac{1}{x} , \frac{1}{y}\right)$. Then, $Q(f(x) , f(y)) : f(f(x) + f(y)) = x + y \forall x, y \in \mathbb{R^+}$.
$(\star \star) Q(x,x) :  f(2f(x))  = 2x$
$  $
$(\star \star \star) Q(2f(x) , 2f(y)): f(2x + 2y ) = 2\cdot (f(x) + f(y))$. (By induction on this, we get $f(2^nx + 2^ny) = 2^nf(x) +2^nf(y)$
In this equation replace $x \mapsto (x+z)$ and observe that:
$$ \underbrace{f(x+z) + f(y) = \frac{1}{2} \cdot \left(f( 2x + 2y + 2z)\right) = f(x+y) + f(z)}_{S(x,y,z)}$$Now using $S(x,x, 3x) : f(2x) + f(3x) = 5 \cdot f(x)$ and $S(x,2x,3x) : 2 \cdot f(3x) - f(2x) = 4 f(x)$.
$  $
Combining both these equations, we get that $f(2x) = 2f(x)$. So , iterating $f$ on both sides we get $f(f(2x)) = f(2f(x)) = 2x \implies f(f(x)) = x \forall x \in  \mathbb{R^+}$.
$ $
So, $f$ is an involution. Now comparing $Q(x,y)$ and $f(f(x+y))$ we see that
$$f(f(x)+f(y)) = x + y = f(f(x+y)) \overset{\text{injection}}{\implies} \underbrace{f(x) + f(y) = f(x+y)}_{\text{Cauchy}} \implies f \equiv \alpha x + \beta $$Plugging this back in $P(x,y)$ we get $\beta = 0$ and $\alpha = 1$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
william122
1576 posts
#11 • 1 Y
Y by Adventure10
Denote the assertion as $P(x,y)$.

As $x\to 0$, we get unbounded values of $f$, and for a fixed value of $y$, we get that $f(x)$ is surjective over $\left(\frac{1}{f(y)},\infty\right)$. So, letting $f(y)$ tend towards infinity gives surjectivity.

If $f(x_1)=f(x_2)$, $P\left(\frac{1}{x_1},y\right),P\left(\frac{1}{x_2},y\right)$ gives $x_1=x_2$, so $f$ is bijective.

Consider $P\left(x,\frac{1}{y}\right)$. As $x$ varies for fixed $y$, we get that the image of $(y,\infty)$ is $\left(\frac{1}{f(1/y)},\infty\right)$. Thus, if $y_1<y_2$, $\frac{1}{f(1/y_1)}<\frac{1}{f(1/y_2)}$, so $f$ is increasing. As it is both increasing and bijective, our function must be continuous.

Consider $P\left(\frac{1}{y-\frac{1}{f(x)}},x\right)$. This gives that $f\left(\frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)\right)=y-\frac{1}{f(x)}+\frac{1}{f(x)}=y$, so it is fixed as $x$ varies. Note that we must have $x>f^{-1}\left(\frac{1}{y}\right)$ to make sure the argument is positive, and as $x$ approaches this lower bound, the LHS gets arbitrarily close to $C=f\left(\frac{1}{f^{-1}\left(1/y\right)}\right)$. The RHS cannot be less than $C$, since it will otherwise be exceeded as $x$ approaches $f^{-1}\left(\frac{1}{y}\right)$. Likewise, it can't be more than $C$. So, we must have $f\left(\frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)\right)=C=f\left(\frac{1}{f^{-1}(1/y)}\right)\implies \frac{1}{x}+f\left(y-\frac{1}{f(x)}\right)=\frac{1}{f^{-1}(1/y)}$. As $x\to\infty$, LHS approaches $f(y)$, so we can get by similar logic that it must always be $f(y)$. Thus, $f^{-1}(1/y)=\frac{1}{f(y)}\implies f\left(\frac{1}{f(y)}\right)=\frac{1}{y}$.

Finally, consider $P(x,f(y))$, which gives $\frac{1}{x}+\frac{1}{f(f(y))}=f\left(\frac{1}{f(y)}+f\left(\frac{1}{x}\right)\right)$. As $x\to\infty$, LHS approaches $\frac{1}{f(f(y))}$ while RHS is always larger, but approaches $\frac{1}{y}$ by above. Using a similar argument, if $\frac{1}{y}>\frac{1}{f(f(y))}$, then we eventualy have RHS>LHS, and if $\frac{1}{f(f(y))}>\frac{1}{y}$, we have the opposite. Hence, $\frac{1}{f(f(y))}=\frac{1}{y}\implies f(f(y))=y$.

Now, we have that $f$ is both an involution and increasing. If it is nonconstant, though, we can find $a<b$ such that $f(a)=b>f(b)=a$. Thus, $f(x)=x$ is the only solution.
This post has been edited 2 times. Last edited by william122, Dec 24, 2019, 12:33 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Functional_equation
530 posts
#12 • 1 Y
Y by amar_04
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.
This is Hard(and Nice)
Claim 1.$f$ is injective function.
Proof:
$$P(\frac{1}{x},\frac{1}{f(y)})\implies f(f(x)+f(y))=x+\frac{1}{f(\frac{1}{f(y)})}=y+\frac{1}{f(\frac{1}{f(x)})}\implies f(\frac{1}{f(x)})=\frac{1}{x+c}$$$f(\frac{1}{f(x)})=\frac{1}{x+c}\implies f\to injective$
Claim 2.$f(\frac{1}{f(x)})=\frac{1}{x}$
Proof:
$P(f(x),y)\implies \frac{1}{f(x)}+\frac{1}{f(y)}=f(\frac{1}{y}+f(\frac{1}{f(x)}))=f(\frac{1}{y}+\frac{1}{x+c})$
$P(f(y),x)\implies \frac{1}{f(y)}+\frac{1}{f(x)}=f(\frac{1}{x}+f(\frac{1}{f(y)}))=f(\frac{1}{x}+\frac{1}{y+c})$
Then $f(\frac{1}{y}+\frac{1}{x+c})=f(\frac{1}{x}+\frac{1}{y+c})\implies \frac{1}{y}+\frac{1}{x+c}=\frac{1}{x}+\frac{1}{y+c}$
Then $c=0\implies f(\frac{1}{f(x)})=\frac{1}{x}$
$P(f(x),y)\implies f(\frac{1}{x}+\frac{1}{y})=\frac{1}{f(x)}+\frac{1}{f(y)}$
$x=\frac{kt}{k+t}\implies f(\frac{1}{k}+\frac{1}{t}+\frac{1}{y})=\frac{1}{f(y)}+\frac{1}{f(\frac{kt}{k+t})}$
Then
$\frac{1}{f(y)}+\frac{1}{f(\frac{kt}{k+t})}=\frac{1}{f(k)}+\frac{1}{f(\frac{yt}{y+t})}$
$\frac{1}{f(\frac{1}{x})}=g(x)$
Then
$g(\frac{1}{y})+g(\frac{1}{k}+\frac{1}{t})=g(\frac{1}{k})+g(\frac{1}{y}+\frac{1}{t})$
$\frac{1}{y}\to y,\frac{1}{k}\to k,\frac{1}{t}\to t$
Then
$g(y+t)-g(y)=g(k+t)-g(k)\implies g-additive$
And $g:\mathbb{R^+}\rightarrow\mathbb{R^+},additive\implies g(x)=kx+b$
$f(\frac{1}{f(x)})=\frac{1}{x}\implies g(\frac{1}{g(x)})=\frac{1}{x}\implies \frac{k}{kx+b}+b=\frac{1}{x}$
Then $b=0,k=1$
$g(x)=x,x\in R^+\implies f(x)=x,x\in R^+$
This post has been edited 1 time. Last edited by Functional_equation, Jan 5, 2021, 3:50 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Prod55
127 posts
#13
Y by
Let $P(x,y)$ the given assertion.
$P(1/x,1/f(y)): 1/f(1/f(y)))+x=f(f(y)+f(x))$
$y\leftrightarrow x $: $1/f(1/f(y)))+x=1/f(1/f(x)))+y$ so $f(1/f(x))=1/(x+C)$, so $f$ is injective.
Now we have that $P(1/x,1/f(y)) : x+y+C=f(f(x)+f(y)) :Q(x,y)$
$Q(x+z,y): x+y+z+C=f(f(x+z)+f(y))$
$Q(x,y+z): x+y+z+C=f(f(x)+f(y+z))$.
Since $f$ is injective we have that $f(x+z)+f(y)=f(x)+f(y+z)$.
Therefore $x+y+C+f(f(z))=f(f(x)+f(y))+f(f(z))=f(f(x))+f(f(y)+f(z))=f(f(x))+y+z+C$ so $f(f(x))=x+D$.
$P(1/f(x),1/y): f(x)+1/f(1/y))=f(x+y+D)=f(y)+1/f(1/x))$ so $f(x)-1/f(1/x))=E$.
setting $x\leftrightarrow 1/x$ it's simple to show that $E=0$ so $f(x)f(1/x)=1$.
Since $f(1/f(x))=1/(x+C)$ we have that $f(f(x))=x+C$ so $C=D$.
Also $1/x+D=f(f(1/x))=f(1/f(x))=1/f(f(x))=1/(x+D)\Leftrightarrow...\Leftrightarrow D=0$, thus $C=D=0$.
So $f(f(x))=x$ and $f(f(x)+f(y))=x+y$.
$x\rightarrow f(x),y\rightarrow f(y): f(x+y)=f(x)+f(y)$ etc.
This post has been edited 1 time. Last edited by Prod55, Jun 12, 2021, 1:54 PM
Reason: typo
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Keith50
464 posts
#14
Y by
Answer: $f(x)=\frac{1}{x} \ \ \forall x\in \mathbb{R}^+.$
Proof: It's easy to see that the above function is a solution. Let $P(x,y)$ denote the given assertion, by comparing \[P\left(\frac{1}{x}, \frac{1}{f(1)}\right) \implies \frac{1+xf\left(\frac{1}{f(1)}\right)}{f\left(\frac{1}{f(1)}\right)}=f(f(1)+f(x))\]and \[P\left(1,\frac{1}{f(x)}\right)\implies \frac{1+f\left(\frac{1}{f(x)}\right)}{f\left(\frac{1}{f(x)}\right)}=f(f(x)+f(1))\]we will get $f\left(\frac{1}{f(x)}\right)=\frac{1}{x+C_1}$ where $C_1=\frac{1}{f\left(\frac{1}{f(1)}\right)}-1.$ From here, it's also clear that $f$ is injective. Also, by comparing \[P(f(x),1) \implies \frac{f(x)+f(1)}{f(x)f(1)}=f\left(1+f\left(\frac{1}{f(x)}\right)\right)\]and \[P(f(1),x) \implies \frac{f(1)+f(x)}{f(1)f(x)}=f\left(\frac{1}{x}+f\left(\frac{1}{f(1)}\right)\right)\]we will get $f\left(1+f\left(\frac{1}{f(x)}\right)\right)=f\left(\frac{1}{x}+f\left(\frac{1}{f(1)}\right)\right) \implies f\left(\frac{1}{f(x)}\right)=\frac{1}{x}+C_2$ where $C_2=f\left(\frac{1}{f(1)}\right)-1.$ Therefore, we have $\frac{1}{x+C_1}=\frac{1}{x}+C_2$ or equivalently, $C_2x^2+C_1C_2x+C_1=0.$ Since this holds for all positive real $x$, it must be the case where $C_1=C_2=0$ which implies $f\left(\frac{1}{f(x)}\right)=\frac{1}{x}.$ Now notice that \[P\left(\frac{1}{x}, \frac{1}{f(x)}\right) \implies f(2f(x))=2x\]and so $4f(x)=f(2f(2f(x)))=f(4x).$ Then, \[P\left(\frac{1}{x}, \frac{1}{f(3x)}\right)\implies f(f(3x)+f(x))=4x=f(2f(2x)) \implies f(3x)+f(x)=2f(2x)\]and \[P\left(\frac{1}{2x}, \frac{1}{f(4x)}\right)\implies f(4f(x)+f(2x))=f(f(4x)+f(2x))=6x=f(2f(3x)) \implies 4f(x)+f(2x)=2f(3x)\]give us \[4f(2x)-2f(x)=2f(3x)=4f(x)+f(2x) \implies f(2x)=2f(x) \ \ \forall  x\in \mathbb{R}^{+}.\]Hence, $2f(f(x))=f(2f(x))=2x \implies f(f(x))=x$ and $f\left(\frac{1}{x}\right)=f\left(\frac{1}{f(f(x))}\right)=\frac{1}{f(x)}.$ Lastly, \[P\left(f\left(\frac{1}{x}\right), \frac{1}{y}\right)\implies f(x+y)=\frac{f\left(\frac{1}{x}\right)+f\left(\frac{1}{y}\right)}{f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right)}=f(x)+f(y)\]implies $f$ is additive over the positive reals, thus $f$ is linear and letting $f(x)=ax+b$ where $a,b$ are constants, we see that since $f(f(x))=x \implies a^2x+ab+b=x \implies a=1, b=0$, $\boxed{f(x)=x}$ is the only solution. $\quad \blacksquare$
This post has been edited 2 times. Last edited by Keith50, Jul 7, 2021, 5:21 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Mahdi_Mashayekhi
695 posts
#15
Y by
$\frac{x+f(y)}{xf(y)} = \frac{1}{f(y)} + \frac{1}{x}$ Now put $\frac{1}{x}$ instead of $x$ in equation. Let $P(x,y) : \frac{1}{f(y)} + x = f(\frac{1}{y} + f(x))$.
Let $f(a) = f(b)$ then $P(a,y) , P(b,y)$ implies that $f$ is injective.
$P(x,\frac{1}{f(y)}) : \frac{1}{f(\frac{1}{f(y)})} + x = f(f(y) + f(x)) = \frac{1}{f(\frac{1}{f(x)})} + y \implies \frac{1}{f(\frac{1}{f(x)})} - x = t \implies f(\frac{1}{f(x)}) = \frac{1}{x+t}$
$P(f(x),y) : f(\frac{1}{y} + \frac{1}{x+t}) = \frac{1}{f(y)} + \frac{1}{f(x)} = f(\frac{1}{x} + \frac{1}{y+t}) \implies \frac{1}{y} + \frac{1}{x+t} = \frac{1}{x} + \frac{1}{y+t} \implies t = 0 \implies f(\frac{1}{f(x)}) = \frac{1}{x}$
$P(x,\frac{1}{f(y)}) : \frac{1}{f(\frac{1}{f(y)})} + x = f(f(y) + f(x)) \implies f(f(y) + f(x)) = x+y$ Let $f(f(y) + f(x)) = x+y$ be $Q(x,y)$.
$Q(x,x) , Q(x-t,x+t) : f(x+t) - f(x) = f(x) - f(x-t)$ which holds for any $x > t > 0$ which implies that $f$ is linear so $f(x)=  ax + b$.
we had $f(f(y) + f(x)) = x+y \implies f(a(x+y)+2b) = x+y \implies a^2(x+y) + 2ab + b = x+y \implies (a^2-1)(x+y) + 2ab + b = 0$ which since $a,b$ are constant but $x,y$ are not implies that $a^2-1 = 0 \implies a = 1$ so $x+y + 2b + b = x+y \implies b = 0$ so $f(x) = ax + b = x$ which clearly works.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ZETA_in_olympiad
2211 posts
#16 • 1 Y
Y by Mango247
Also see here.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Knty2006
50 posts
#17
Y by
Man this took really long

Note that the above is equivalent to $\frac{1}{f(y)}+\frac{1}{x}=f(\frac{1}{y}+f(\frac{1}{x}))$, which also implies injective as a result

Let $P(x,y) : \frac{1}{f(y)}+\frac{1}{x}=f(\frac{1}{y}+f(\frac{1}{x}))$
Setting $P(f(x),y)=P(f(y),x)$, we get $\frac{1}{y}-f(\frac{1}{f(y)})=\frac{1}{x}-f(\frac{1}{f(x)})$

This implies that $\frac{1}{x}-f(\frac{1}{f(x)})=-c$ for some constant $c$ over all values of $x$

Now, setting $P(x,\frac{1}{f(\frac{1}{y})})=(y,\frac{1}{f(\frac{1}{x})})$
$\frac{1}{x}-\frac{1}{x+c}=\frac{1}{y}-\frac{1}{y+c}$

Note this only holds iff $c=0$

Taking $P(x,\frac{1}{f(y)})$
$y+\frac{1}{x}=f(f(y)+f(\frac{1}{x}))$
$y+x=f(f(y)+f(x))$

Now note, if $a+b=c+d$
$f(f(a)+f(b))=a+b=c+d=f(f(c)+f(d))$
Due to injectivity, this implies $f(a)+f(b)=f(c)+f(d)$

Note $2f(3x)=f(4x)+f(2x)=3f(2x)$
Also, $5f(2x)=2f(3x)+2f(2x)=2f(4x)+2f(x)=4f(2x)+2f(x)$, so $f(2x)=2f(x)$

Recall $P(y,f(y))$ implies $\frac{f(y)}{2}f(\frac{2}{y})=1$
However, together with $f(2x)=2f(x)$, we have $\frac{1}{f(x)}=f(\frac{1}{x})$

Therefore, we have that $f(f(x))=x$

Also,$ P(\frac{1}{x},\frac{1}{y})$ gives us $f(y)+x=f(y+f(x))$ , Since $f$ is surjective, varying the value of $f(x)$, we have that $f$ is a strictly increasing function
FTSOC suppose $f(x)=a$ where $a>x$ Then, note $f(a)=x<a<f(x)$ contradiction. The same holds for when $a<x$

Hence, $f(x)=x$ for all values of $x$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ThisNameIsNotAvailable
442 posts
#18
Y by
Amin12 wrote:
Find all functions $f:\mathbb{R^+}\rightarrow\mathbb{R^+}$ such that
$$\frac{x+f(y)}{xf(y)}=f(\frac{1}{y}+f(\frac{1}{x}))$$for all positive real numbers $x$ and $y$.

My 400th post. Let $P(x,y)$ be the assertion of the given FE, which is $$f\left(\frac1{y}+f\left(\frac1{x}\right)\right)=\frac1{f(y)}+\frac1{x},\quad\forall x,y>0.$$Assume that $f(a)=f(b)$, then $P(1/a,y)$ and $P(1/b,y)$ give $a=b$ or $f$ is injective.
Hence comparing $P(f(x),y)$ and $P(f(y),x)$, we easily get $$\frac1{y}+f\left(\frac1{f(x)}\right)=\frac1{x}+f\left(\frac1{f(y)}\right)\implies f\left(\frac1{f(x)}\right)=\frac1{x}+c.$$Similarly, comparing $P(1/x,1/f(y))$ and $P(1/y,1/f(x))$, we get $$f\left(\frac1{f(x)}\right)=\frac1{x+d}\implies\frac1{x}+c=\frac1{x+d},$$for all $x>0$. Let $x\to\infty$, we get $c=d=0$, so $f\left(\frac1{f(x)}\right)=\frac1{x}$ and $P(1/x,1/f(y))$ gives $$Q(x,y):f(f(x)+f(y))=x+y,\quad\forall x,y>0.$$$Q(f(x)+f(y),y)$ gives $$f(x+y+f(y))=f(x)+y+f(y).$$Plugging $x$ by $x+f(x)$ into the above FE and changing the role of $x,y$, by the injectivity, we get $$f(x+f(x))=x+f(x)+d.$$If $d>0$, $Q(x+f(x),d)$ and the injectivity give $d+f(d)=0$, absurb. Thus $d=0$, so $Q(x,f(x))$ gives $$f(f(x)+f(f(x)))=x+f(x)=f(x+f(x))\implies f(f(x))=x.$$$Q(f(x),f(y))$ immediately implies $f$ is additive, so after checking, we get $f(x)=x$ for all $x>0$ is a solution.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1266 posts
#19
Y by
Rewrite the assertion as $\frac 1x + \frac{1}{f(y)} = f(\frac 1y + f(\frac 1x))$.

Claim: $f$ is bijective.
Proof: For injectivity, we can vary $\frac 1x$. For surjectivity, observe we can hit any value above $\frac{1}{f(y)}$, since we can make $\frac{1}{f(y)}$ as small as we want we are done.

Now let $\frac 1y = a$, we have $\frac{1}{f(\frac 1a)} < f(a + k)$ as $k$ is a positive real. Then we have $\frac 1x + \frac{1}{f(y)} = f(\frac 1y + f(\frac 1x)) > \frac{1}{f(\frac{1}{f(x)})}$, so letting $\frac{1}{f(y)}$ approach zero gives $f(\frac{1}{f(x)}) \ge \frac 1x$. Now substitute $x = f(k)$, so we have $\frac{1}{f(k)} + \frac{1}{f(y)} = f(f(\frac{1}{f(k)}) + \frac 1y ) = f(\frac 1k + \frac 1y + c)$ for $c = f(\frac{1}{f(k)}) - \frac 1k \ge 0)$. Now observe each pair $(k,y)$ results in exactly one value of $c$, which is the same as the value of $c$ given by $(y,k)$, but also this value is uniquely determined by $k$ so $c$ is constant, thus $f(\frac{1}{f(x)}) = \frac 1x + c$, but since the left hand side gets as small as we want we must have $c = 0$ and $\frac{1}{f(x)}+ \frac{1}{f(y)}= f(\frac 1x + \frac 1y)$.

Now let $f(a)= 1, f(\frac{1}{f(a)} ) = f(1) = a$, then we have $f(\frac{1}{f(1)}) =f(\frac 1a) = 1$, so $a = \frac 1a$ giving $a = 1$.

Now we prove that $f$ is the identity. Assume $a < b$ but $f(a) \ge f(b)$. Now we have $\frac{1}{f(a)} \le\frac{1}{f(b)} < f(\frac 1b + k) = f(\frac 1a)$, giving $f(a)f(\frac 1a) > 1$. Clearly, $a$ cannot be $1$, so $f(x) > 1$ for $x > 1$. Likewise, assume $\frac{1}{f(x)} > 1 $, which gives $\frac 1x > 1$, so $f(x) > 1$ iff $x  >1$. This fact carries the rest of the solution, we can now proceed with a standard rational extension.

First we solve $f$ over rationals. Let $Q$ be the assertion $\frac{1}{f(x)} + \frac{1}{f(y)} = f(\frac 1x + \frac 1y)$. Now $Q(1,1)$ gives $f(2) = 2$, then we can use the assertion $R$, being $f(\frac{1}{f(x)}) = \frac 1x$ to get $f(\frac 12) = 2$. Now we can always induct, do $Q(1, \frac 1n)$ to get $f(n + 1) =n + 1$ and $R(n + 1)$ to get $f(\frac{1}{n + 1}) = \frac{1}{n +1}$. Now to get all rationals we induct on the denominator, we can use $Q(\frac 1n, 2)$ to get all rationals with denominator $2$, then use $Q(\frac 1n, 3)$ and $Q(\frac 1n, \frac 32)$ to get all rationals with denominator $3$, and so one and so forth we win.

To finish, we prove $f(r) = r$ for all reals. First take $r > 1$. Assume $f(r) > r$. Then there exists some rational $q$ with $\frac{1}{f(q)} + \frac{1}{f(r)} < 1 < \frac 1q + \frac 1r$, contradiction. Symmetrical argument proves $f(r) = r$ for $r > 1$. Now consider $R(\frac 1r)$, this gives $f(\frac{1}{f(\frac 1r)}) = r$, giving $\frac 1r = f(\frac 1r)$ by injectivity.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bin_sherlo
720 posts
#21
Y by
\[\frac{1}{f(y)}+x=f(\frac{1}{y}+f(x))\]Answer is $f(x)=x$ which holds. Let $P(x,y)$ be the assertion.
Claim: $f$ is bijective.
Proof: If $f(a)=f(b)$, compare $P(a,y)$ and $P(b,y)$ to get contradiction. Fix $y$ and increase $x$ to see that $f$ takes all sufficiently large positive values. We can pick $1/f(y)$ sufficiently small thus, $f$ is surjective.
Claim: $f(\frac{1}{f(x)})=\frac{1}{x}$.
Proof: Plug $P(x,1/f(y))$ in order to observe that
\[\frac{1}{f(\frac{1}{f(y)})}+x=f(f(x)+f(y))=\frac{1}{f(\frac{1}{f(x)})}+y\implies x-\frac{1}{f(\frac{1}{f(x)})}=y-\frac{1}{f(\frac{1}{f(y)})}\]Since this implies $x-1/f(1/f(x))$ is constant and it's smaller than any positive $y$, it must be a nonpositive constant. Let $\frac{1}{f(\frac{1}{f(x)})}=x+c$ or $f(\frac{1}{f(x)})=\frac{1}{x+c}$ where $c\geq 0$. By symmetry and injectivity we have
\[f(\frac{1}{x}+\frac{1}{y+c})=f(\frac{1}{x}+f(\frac{1}{f(y)}))=\frac{1}{f(y)}+\frac{1}{f(x)}=f(\frac{1}{y}+f(\frac{1}{f(x)}))=f(\frac{1}{y}+\frac{1}{x+c})\]Thus, $\frac{1}{x}-\frac{1}{x+c}=\frac{c}{x(x+c)}$ is constant which requires $c=0$. So $f(1/f(x))=1/x$ as we have claimed.
Claim: $f$ is involution and $f(x)f(\frac{1}{x})=1$.
Proof: $P(x,1/f(y))$ gives $x+y=f(f(x)+f(y)) $. We get $f(f(x)+f(y+z))=x+y+z=f(f(x+z)+f(y))$ and injectivity implies $f(x+y)-f(x)$ is independent of $x$. Let $f(x+y)-f(x)=h(y)$. Since $h(x)+f(y)=f(x+y)=h(y)+f(x)$ we observe $h(x)=f(x)+d$. Thus, $f(x+y)=f(x)+f(y)+d$.
\[f(f(x))+f(\frac{1}{y})+d=f(f(x)+\frac{1}{y})=x+\frac{1}{f(y)}\]$f(f(x))-x=t$ and $f(\frac{1}{y})-\frac{1}{f(y)}=r$. Since $r=f(\frac{1}{f(x)})-\frac{1}{f(f(x))}=\frac{1}{x}-\frac{1}{x+t}=\frac{t}{x(x+t)}$, we must have $t=0$ which implies $r=0$. Thus, $f$ is an involution and $f(x)f(\frac{1}{x})=1$.
Claim: $f$ is additive.
Proof: $P(f(x),1/y)$ yields $f(x)+f(y)=f(x+y)$.

Since $f$ is additive and $f$ takes values on positive reals, $f$ is Cauchy function hence $f(x)=cx$ which implies $c=1$. So $f(x)=x$ is the only solution as desired.$\blacksquare$
Z K Y
N Quick Reply
G
H
=
a