Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Quadrilateral with Congruent Diagonals
v_Enhance   37
N 13 minutes ago by Ilikeminecraft
Source: USA TSTST 2012, Problem 2
Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.
37 replies
v_Enhance
Jul 19, 2012
Ilikeminecraft
13 minutes ago
Algebra inequalities
TUAN2k8   0
24 minutes ago
Source: Own
Is that true?
Let $a_1,a_2,...,a_n$ be real numbers such that $0 \leq a_i \leq 1$ for all $1 \leq i \leq n$.
Prove that: $\sum_{1 \leq i<j \leq n} (a_i-a_j)^2 \leq \frac{n}{2}$.
0 replies
1 viewing
TUAN2k8
24 minutes ago
0 replies
geometry
EeEeRUT   1
N 25 minutes ago by ItzsleepyXD
Source: TMO 2025
Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.
1 reply
EeEeRUT
29 minutes ago
ItzsleepyXD
25 minutes ago
Spanish Mathematical Olympiad 2002, Problem 1
OmicronGamma   3
N 29 minutes ago by NicoN9
Source: Spanish Mathematical Olympiad 2002
Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$:
$P(x^2-y^2) = P(x+y)P(x-y)$.
3 replies
OmicronGamma
Jun 2, 2017
NicoN9
29 minutes ago
Inspired by lbh_qys.
sqing   3
N an hour ago by lbh_qys
Source: Own
Let $ a,b>0   $ . Prove that
$$ \frac{a}{a^2+a +b+1}+ \frac{b}{b^2+a +b+1}  \leq  \frac{1}{2} $$$$ \frac{a}{a^2+ab+a+b+1}+ \frac{b}{b^2+ab+a+b+1} \leq   \sqrt 2-1  $$$$\frac{a}{a^2+ab+a+1}+ \frac{b}{b^2+ab+b+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$$$\frac{a}{a^2+ab+b+1}+ \frac{b}{b^2+ab+a+1} \leq  \frac{2(2\sqrt 2-1)}{7} $$
3 replies
sqing
3 hours ago
lbh_qys
an hour ago
Additive set with special property
the_universe6626   1
N an hour ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
an hour ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N an hour ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
an hour ago
So Many Terms
oVlad   7
N 2 hours ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
2 hours ago
Cauchy like Functional Equation
ZETA_in_olympiad   3
N 2 hours ago by jasperE3
Find all functions $f:\bf R^{\geq 0}\to R$ such that $$f(x^2)+f(y^2)=f\left (\dfrac{x^2y^2-2xy+1}{x^2+2xy+y^2}\right)$$for all $x,y>0$ and $xy>1.$
3 replies
ZETA_in_olympiad
Aug 20, 2022
jasperE3
2 hours ago
special polynomials and probability
harazi   12
N 2 hours ago by MathLuis
Source: USA TST 2005, Problem 3, created by Harazi and Titu
We choose random a unitary polynomial of degree $n$ and coefficients in the set $1,2,...,n!$. Prove that the probability for this polynomial to be special is between $0.71$ and $0.75$, where a polynomial $g$ is called special if for every $k>1$ in the sequence $f(1), f(2), f(3),...$ there are infinitely many numbers relatively prime with $k$.
12 replies
harazi
Jul 14, 2005
MathLuis
2 hours ago
Hard to approach it !
BogG   131
N 3 hours ago by Giant_PT
Source: Swiss Imo Selection 2006
Let $\triangle ABC$ be an acute-angled triangle with $AB \not= AC$. Let $H$ be the orthocenter of triangle $ABC$, and let $M$ be the midpoint of the side $BC$. Let $D$ be a point on the side $AB$ and $E$ a point on the side $AC$ such that $AE=AD$ and the points $D$, $H$, $E$ are on the same line. Prove that the line $HM$ is perpendicular to the common chord of the circumscribed circles of triangle $\triangle ABC$ and triangle $\triangle ADE$.
131 replies
BogG
May 25, 2006
Giant_PT
3 hours ago
circumcircle tangent to angle bisector
parmenides51   1
N Oct 3, 2018 by RagvaloD
Source: Sharygin 2010 Final 8.1
For a nonisosceles triangle $ABC$, consider the altitude from vertex $A$ and two bisectrices from remaining vertices. Prove that the circumcircle of the triangle formed by these three lines touches the bisectrix from vertex $A$.
1 reply
parmenides51
Oct 2, 2018
RagvaloD
Oct 3, 2018
circumcircle tangent to angle bisector
G H J
G H BBookmark kLocked kLocked NReply
Source: Sharygin 2010 Final 8.1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
parmenides51
30652 posts
#1 • 2 Y
Y by Adventure10, Mango247
For a nonisosceles triangle $ABC$, consider the altitude from vertex $A$ and two bisectrices from remaining vertices. Prove that the circumcircle of the triangle formed by these three lines touches the bisectrix from vertex $A$.
This post has been edited 1 time. Last edited by parmenides51, Apr 30, 2019, 7:19 PM
Reason: official formulation added
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
RagvaloD
4913 posts
#2 • 2 Y
Y by Adventure10, Mango247
Point $I$ is point of intersection of bisectors and lies in the circumcircle, so we need to show, that $OI \perp AI$
Easy to prove with angle chasing, that $\angle EIA= 90-\frac{\angle B}{2},\angle GOI=180-\angle B \to \angle OIG=\frac{\angle B}{2}$ so $\angle OIA=90$
Attachments:
Z K Y
N Quick Reply
G
H
=
a