Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
A geometry problem involving 2 circles
Ujiandsd   1
N 18 minutes ago by Ujiandsd
Source: L
Point M is the midpoint of side BC of triangle ABC. The length of the radius of the outer circle of triangle ABM, triangle ACM
is 5 and 7 respectively find the distance between the center of their outer circles
1 reply
Ujiandsd
May 11, 2025
Ujiandsd
18 minutes ago
Thailand MO 2025 P2
Kaimiaku   0
31 minutes ago
A school sent students to compete in an academic olympiad in $11$ differents subjects, each consist of $5$ students. Given that for any $2$ different subjects, there exists a student compete in both subjects. Prove that there exists a student who compete in at least $4$ different subjects.
0 replies
+1 w
Kaimiaku
31 minutes ago
0 replies
Thailand MO 2025 P3
Kaimiaku   2
N 34 minutes ago by lbh_qys
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$
2 replies
Kaimiaku
an hour ago
lbh_qys
34 minutes ago
Burapha integer
EeEeRUT   1
N an hour ago by ItzsleepyXD
Source: TMO 2025 P1
For each positive integer $m$, denote by $d(m)$ the number of positive divisors of $m$. We say that a positive integer $n$ is Burapha integer if it satisfy the following condition
[list]
[*] $d(n)$ is an odd integer.
[*] $d(k) \leqslant d(\ell)$ holds for every positive divisor $k, \ell$ of $n$, such that $k < \ell$
[/list]
Find all Burapha integer.
1 reply
EeEeRUT
an hour ago
ItzsleepyXD
an hour ago
Algebra inequalities
TUAN2k8   1
N an hour ago by lbh_qys
Source: Own
Is that true?
Let $a_1,a_2,...,a_n$ be real numbers such that $0 \leq a_i \leq 1$ for all $1 \leq i \leq n$.
Prove that: $\sum_{1 \leq i<j \leq n} (a_i-a_j)^2 \leq \frac{n}{2}$.
1 reply
TUAN2k8
an hour ago
lbh_qys
an hour ago
Quadrilateral with Congruent Diagonals
v_Enhance   37
N an hour ago by Ilikeminecraft
Source: USA TSTST 2012, Problem 2
Let $ABCD$ be a quadrilateral with $AC = BD$. Diagonals $AC$ and $BD$ meet at $P$. Let $\omega_1$ and $O_1$ denote the circumcircle and the circumcenter of triangle $ABP$. Let $\omega_2$ and $O_2$ denote the circumcircle and circumcenter of triangle $CDP$. Segment $BC$ meets $\omega_1$ and $\omega_2$ again at $S$ and $T$ (other than $B$ and $C$), respectively. Let $M$ and $N$ be the midpoints of minor arcs $\widehat {SP}$ (not including $B$) and $\widehat {TP}$ (not including $C$). Prove that $MN \parallel O_1O_2$.
37 replies
v_Enhance
Jul 19, 2012
Ilikeminecraft
an hour ago
geometry
EeEeRUT   1
N an hour ago by ItzsleepyXD
Source: TMO 2025
Let $D,E$ and $F$ be touch points of the incenter of $\triangle ABC$ at $BC, CA$ and $AB$, respectively. Let $P,Q$ and $R$ be the circumcenter of triangles $AFE, BDF$ and $CED$, respectively. Show that $DP, EQ$ and $FR$ concurrent.
1 reply
EeEeRUT
an hour ago
ItzsleepyXD
an hour ago
Spanish Mathematical Olympiad 2002, Problem 1
OmicronGamma   3
N an hour ago by NicoN9
Source: Spanish Mathematical Olympiad 2002
Find all the polynomials $P(t)$ of one variable that fullfill the following for all real numbers $x$ and $y$:
$P(x^2-y^2) = P(x+y)P(x-y)$.
3 replies
OmicronGamma
Jun 2, 2017
NicoN9
an hour ago
Additive set with special property
the_universe6626   1
N 2 hours ago by jasperE3
Source: Janson MO 1 P2
Let $S$ be a nonempty set of positive integers such that:
$\bullet$ if $m,n\in S$ then $m+n\in S$.
$\bullet$ for any prime $p$, there exists $x\in S$ such that $p\nmid x$.
Prove that the set of all positive integers not in $S$ is finite.

(Proposed by cknori)
1 reply
the_universe6626
Feb 21, 2025
jasperE3
2 hours ago
ISI UGB 2025 P4
SomeonecoolLovesMaths   8
N 2 hours ago by chakrabortyahan
Source: ISI UGB 2025 P4
Let $S^1 = \{ z \in \mathbb{C} \mid |z| =1 \}$ be the unit circle in the complex plane. Let $f \colon S^1 \longrightarrow S^2$ be the map given by $f(z) = z^2$. We define $f^{(1)} \colon = f$ and $f^{(k+1)} \colon = f \circ f^{(k)}$ for $k \geq 1$. The smallest positive integer $n$ such that $f^{(n)}(z) = z$ is called the period of $z$. Determine the total number of points in $S^1$ of period $2025$.
(Hint : $2025 = 3^4 \times 5^2$)
8 replies
SomeonecoolLovesMaths
Sunday at 11:24 AM
chakrabortyahan
2 hours ago
So Many Terms
oVlad   7
N 3 hours ago by NuMBeRaToRiC
Source: KöMaL A. 765
Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\]Proposed by Dániel Dobák, Budapest
7 replies
oVlad
Mar 20, 2022
NuMBeRaToRiC
3 hours ago
Maximum of Incenter-triangle
mpcnotnpc   4
N Apr 21, 2025 by mpcnotnpc
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
4 replies
mpcnotnpc
Mar 25, 2025
mpcnotnpc
Apr 21, 2025
Maximum of Incenter-triangle
G H J
G H BBookmark kLocked kLocked NReply
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
53 posts
#1 • 2 Y
Y by kiyoras_2001, fAaAtDoOoG
Triangle $\Delta ABC$ has side lengths $a$, $b$, and $c$. Select a point $P$ inside $\Delta ABC$, and construct the incenters of $\Delta PAB$, $\Delta PBC$, and $\Delta PAC$ and denote them as $I_A$, $I_B$, $I_C$. What is the maximum area of the triangle $\Delta I_A I_B I_C$?
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
53 posts
#2
Y by
bumpbump
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
53 posts
#3
Y by
bumppppp
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
53 posts
#4
Y by
:( :( :( :( :( bump
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mpcnotnpc
53 posts
#5
Y by
bump? :( :( :(
Z K Y
N Quick Reply
G
H
=
a