Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Geometry
Lukariman   0
20 minutes ago
Given acute triangle ABC - M is a variable point on side AB. The circle circumscribing triangle BCM intersects AC at N.

a)Let I be the center of the circle circumscribing triangle AMN. Prove that I always lies on a fixed line.

b)Let J be the center of the circle circumscribing triangle MBC. Prove that line segment IJ has a constant length.
0 replies
Lukariman
20 minutes ago
0 replies
Concurrent lines
MathChallenger101   4
N an hour ago by oVlad
Let $A B C D$ be an inscribed quadrilateral. Circles of diameters $A B$ and $C D$ intersect at points $X_1$ and $Y_1$, and circles of diameters $B C$ and $A D$ intersect at points $X_2$ and $Y_2$. The circles of diameters $A C$ and $B D$ intersect in two points $X_3$ and $Y_3$. Prove that the lines $X_1 Y_1, X_2 Y_2$ and $X_3 Y_3$ are concurrent.
4 replies
MathChallenger101
Feb 8, 2025
oVlad
an hour ago
Find the value
sqing   7
N an hour ago by giangtruong13
Source: Own
Let $a,b,c$ be distinct real numbers such that $ \frac{a^2}{(a-b)^2}+ \frac{b^2}{(b-c)^2}+ \frac{c^2}{(c-a)^2} =1. $ Find the value of $\frac{a}{a-b}+ \frac{b}{b-c}+ \frac{c}{c-a}.$
Let $a,b,c$ be distinct real numbers such that $\frac{a^2}{(b-c)^2}+ \frac{b^2}{(c-a)^2}+ \frac{c^2}{(a-b)^2}=2. $ Find the value of $\frac{a}{b-c}+ \frac{b}{c-a}+ \frac{c}{a-b}.$
Let $a,b,c$ be distinct real numbers such that $\frac{(a+b)^2}{(a-b)^2}+ \frac{(b+c)^2}{(b-c)^2}+ \frac{(c+a)^2}{(c-a)^2}=2. $ Find the value of $\frac{a+b}{a-b}+\frac{b+c}{b-c}+ \frac{c+a}{c-a}.$
7 replies
sqing
Mar 17, 2025
giangtruong13
an hour ago
2025 HMIC-5
EthanWYX2009   0
an hour ago
Source: 2025 HMIC-5
Compute the smallest positive integer $k > 45$ for which there exists a sequence $a_1, a_2, a_3, \ldots ,a_{k-1}$ of positive integers satisfying the following conditions:[list]
[*]$a_i = i$ for all integers $1 \le i \le 45;$
[*] $a_{k-i} = i$ for all integers $1 \le i \le 45;$
[*] for any odd integer $1 \le n \le k -45,$ the sequence $a_n, a_{n+1}, \ldots  , a_{n+44}$ is a permutation of
$\{1, 2, \ldots  , 45\}.$[/list]
Proposed by: Derek Liu
0 replies
EthanWYX2009
an hour ago
0 replies
I need the technique
DievilOnlyM   14
N an hour ago by Entei
Let a,b,c be real numbers such that: $ab+7bc+ca=188$.
FInd the minimum value of: $5a^2+11b^2+5c^2$
14 replies
DievilOnlyM
May 23, 2019
Entei
an hour ago
Cyclic Quads and Parallel Lines
gracemoon124   15
N an hour ago by Adywastaken
Source: 2015 British Mathematical Olympiad?
Let $ABCD$ be a cyclic quadrilateral. Let $F$ be the midpoint of the arc $AB$ of its circumcircle which does not contain $C$ or $D$. Let the lines $DF$ and $AC$ meet at $P$ and the lines $CF$ and $BD$ meet at $Q$. Prove that the lines $PQ$ and $AB$ are parallel.
15 replies
gracemoon124
Aug 16, 2023
Adywastaken
an hour ago
Something nice
KhuongTrang   33
N an hour ago by NguyenVanHoa29
Source: own
Problem. Given $a,b,c$ be non-negative real numbers such that $ab+bc+ca=1.$ Prove that

$$\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le 1+2\sqrt{a+b+c+abc}.$$
33 replies
KhuongTrang
Nov 1, 2023
NguyenVanHoa29
an hour ago
Geometry hard
Lukariman   2
N an hour ago by Primeniyazidayi
Given triangle ABC inscribed in circle (O). The bisector of angle A intersects (O) at D. Let M, N be the midpoints of AB, AC respectively. OD intersects BC at P and AD intersects MN at S. The circle circumscribed around triangle MPS intersects BC at Q different from P. Prove that QA is tangent to (O).
2 replies
Lukariman
2 hours ago
Primeniyazidayi
an hour ago
help!!!!!!!!!!!!
Cobedangiu   3
N 2 hours ago by sqing
help
3 replies
Cobedangiu
Mar 23, 2025
sqing
2 hours ago
Inequality
nguyentlauv   1
N 2 hours ago by NguyenVanHoa29
Source: Own
Let $a,b,c$ be positive real numbers such that $ab+bc+ca=3$ and $k\ge 0$, prove that
$$\frac{\sqrt{a+1}}{b+c+k}+\frac{\sqrt{b+1}}{c+a+k}+\frac{\sqrt{c+1}}{a+b+k} \geq \frac{3\sqrt{2}}{k+2}.$$
1 reply
1 viewing
nguyentlauv
Yesterday at 12:19 PM
NguyenVanHoa29
2 hours ago
Great similarity
steven_zhang123   3
N 2 hours ago by Lil_flip38
Source: a friend
As shown in the figure, there are two points $D$ and $E$ outside triangle $ABC$ such that $\angle DAB = \angle CAE$ and $\angle ABD + \angle ACE = 180^{\circ}$. Connect $BE$ and $DC$, which intersect at point $O$. Let $AO$ intersect $BC$ at point $F$. Prove that $\angle ACE = \angle AFC$.
3 replies
steven_zhang123
2 hours ago
Lil_flip38
2 hours ago
Nice problem about the Lemoine point of triangle JaBC and OI line
Ktoan07   0
Apr 18, 2025
Source: Own
Let \(\triangle ABC\) be an acute-angled, non-isosceles triangle with circumcenter \(O\) and incenter \(I\), such that

\[
\prod_{\text{cyc}} \left( \frac{1}{a+b-c} + \frac{1}{a+c-b} - \frac{2}{b+c-a} \right) \neq 0,
\]
where \(a = BC\), \(b = CA\), and \(c = AB\).

Let \(J_a\), \(J_b\), and \(J_c\) be the excenters opposite to vertices \(A\), \(B\), and \(C\), respectively, and let \(L_a\), \(L_b\), and \(L_c\) be the Lemoine points of triangles \(J_aBC\), \(J_bCA\), and \(J_cAB\), respectively.

Prove that the circles \((L_aBC)\), \((L_bCA)\), and \((L_cAB)\) all pass through a common point \(P\). Moreover, the isogonal conjugate of \(P\) with respect to \(\triangle ABC\) lies on the line \(OI\).

Note (Hint)
0 replies
Ktoan07
Apr 18, 2025
0 replies
Nice problem about the Lemoine point of triangle JaBC and OI line
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ktoan07
108 posts
#1 • 1 Y
Y by buratinogigle
Let \(\triangle ABC\) be an acute-angled, non-isosceles triangle with circumcenter \(O\) and incenter \(I\), such that

\[
\prod_{\text{cyc}} \left( \frac{1}{a+b-c} + \frac{1}{a+c-b} - \frac{2}{b+c-a} \right) \neq 0,
\]
where \(a = BC\), \(b = CA\), and \(c = AB\).

Let \(J_a\), \(J_b\), and \(J_c\) be the excenters opposite to vertices \(A\), \(B\), and \(C\), respectively, and let \(L_a\), \(L_b\), and \(L_c\) be the Lemoine points of triangles \(J_aBC\), \(J_bCA\), and \(J_cAB\), respectively.

Prove that the circles \((L_aBC)\), \((L_bCA)\), and \((L_cAB)\) all pass through a common point \(P\). Moreover, the isogonal conjugate of \(P\) with respect to \(\triangle ABC\) lies on the line \(OI\).

Note (Hint)
Attachments:
This post has been edited 1 time. Last edited by Ktoan07, Apr 18, 2025, 10:26 AM
Z K Y
N Quick Reply
G
H
=
a