Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Which numbers are almost prime?
AshAuktober   5
N 19 minutes ago by Jupiterballs
Source: 2024 Swiss MO/1
If $a$ and $b$ are positive integers, we say that $a$ almost divides $b$ if $a$ divides at least one of $b - 1$ and $b + 1$. We call a positive integer $n$ almost prime if the following holds: for any positive integers $a, b$ such that $n$ almost divides $ab$, we have that $n$ almost divides at least one of $a$ and $b$. Determine all almost prime numbers.
original link
5 replies
AshAuktober
Dec 16, 2024
Jupiterballs
19 minutes ago
Inequality involving square root cube root and 8th root
bamboozled   1
N 32 minutes ago by arqady
If $a,b,c,d,e,f,g,h,k\in R^+$ and $a+b+c=d+e+f=g+h+k=8$, then find the minimum value of $\sqrt{ad^3 g^4} +\sqrt[3]{be^3 h^4} + \sqrt[8]{cf^3 k^4}$
1 reply
bamboozled
3 hours ago
arqady
32 minutes ago
hard problem
Cobedangiu   3
N 36 minutes ago by arqady
$a,b,c>0$ and $a+b+c=7$. CM:
$\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+abc \ge ab+bc+ca-2$
3 replies
Cobedangiu
Yesterday at 4:24 PM
arqady
36 minutes ago
If $b^n|a^n-1$ then $a^b >\frac {3^n}{n}$ (China TST 2009)
Fang-jh   16
N an hour ago by Aiden-1089
Source: Chinese TST 2009 6th P1
Let $ a > b > 1, b$ is an odd number, let $ n$ be a positive integer. If $ b^n|a^n-1,$ then $ a^b > \frac {3^n}{n}.$
16 replies
Fang-jh
Apr 4, 2009
Aiden-1089
an hour ago
Two equal angles
jayme   3
N an hour ago by jayme
Dear Mathlinkers,

1. ABCD a square
2. I the midpoint of AB
3. 1 the circle center at A passing through B
4. Q the point of intersection of 1 with the segment IC
5. X the foot of the perpendicular to BC from Q
6. Y the point of intersection of 1 with the segment AX
7. M the point of intersection of CY and AB.

Prove : <ACI = <IYM.

Sincerely
Jean-Louis
3 replies
jayme
May 2, 2025
jayme
an hour ago
Parallelograms and concyclicity
Lukaluce   31
N 3 hours ago by Ihatecombin
Source: EGMO 2025 P4
Let $ABC$ be an acute triangle with incentre $I$ and $AB \neq AC$. Let lines $BI$ and $CI$ intersect the circumcircle of $ABC$ at $P \neq B$ and $Q \neq C$, respectively. Consider points $R$ and $S$ such that $AQRB$ and $ACSP$ are parallelograms (with $AQ \parallel RB, AB \parallel QR, AC \parallel SP$, and $AP \parallel CS$). Let $T$ be the point of intersection of lines $RB$ and $SC$. Prove that points $R, S, T$, and $I$ are concyclic.
31 replies
Lukaluce
Apr 14, 2025
Ihatecombin
3 hours ago
Concurrency from isogonal Mittenpunkt configuration
MarkBcc168   17
N Today at 12:25 AM by Ilikeminecraft
Source: Fake USAMO 2020 P3
Let $\triangle ABC$ be a scalene triangle with circumcenter $O$, incenter $I$, and incircle $\omega$. Let $\omega$ touch the sides $\overline{BC}$, $\overline{CA}$, and $\overline{AB}$ at points $D$, $E$, and $F$ respectively. Let $T$ be the projection of $D$ to $\overline{EF}$. The line $AT$ intersects the circumcircle of $\triangle ABC$ again at point $X\ne A$. The circumcircles of $\triangle AEX$ and $\triangle AFX$ intersect $\omega$ again at points $P\ne E$ and $Q\ne F$ respectively. Prove that the lines $EQ$, $FP$, and $OI$ are concurrent.

Proposed by MarkBcc168.
17 replies
MarkBcc168
Apr 28, 2020
Ilikeminecraft
Today at 12:25 AM
Centroid, altitudes and medians, and concyclic points
BR1F1SZ   1
N Yesterday at 11:02 PM by sami1618
Source: Austria National MO Part 1 Problem 2
Let $\triangle{ABC}$ be an acute triangle with $BC > AC$. Let $S$ be the centroid of triangle $ABC$ and let $F$ be the foot of the perpendicular from $C$ to side $AB$. The median $CS$ intersects the circumcircle $\gamma$ of triangle $\triangle{ABC}$ at a second point $P$. Let $M$ be the point where $CS$ intersects $AB$. The line $SF$ intersects the circle $\gamma$ at a point $Q$, such that $F$ lies between $S$ and $Q$. Prove that the points $M,P,Q$ and $F$ lie on a circle.

(Karl Czakler)
1 reply
BR1F1SZ
Yesterday at 9:45 PM
sami1618
Yesterday at 11:02 PM
Nordic 2025 P3
anirbanbz   8
N Yesterday at 10:33 PM by lksb
Source: Nordic 2025
Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. Let $E$ and $F$ be points on the line segments $AC$ and $AB$ respectively such that $AEHF$ is a parallelogram. Prove that $\vert OE \vert = \vert OF \vert$.
8 replies
anirbanbz
Mar 25, 2025
lksb
Yesterday at 10:33 PM
Aime type Geo
ehuseyinyigit   0
Yesterday at 9:04 PM
Source: Turkish First Round 2024
In a scalene triangle $ABC$, let $M$ be the midpoint of side $BC$. Let the line perpendicular to $AC$ at point $C$ intersect $AM$ at $N$. If $(BMN)$ is tangent to $AB$ at $B$, find $AB/MA$.
0 replies
ehuseyinyigit
Yesterday at 9:04 PM
0 replies
IMO Shortlist 2011, G4
WakeUp   126
N Yesterday at 6:12 PM by NuMBeRaToRiC
Source: IMO Shortlist 2011, G4
Let $ABC$ be an acute triangle with circumcircle $\Omega$. Let $B_0$ be the midpoint of $AC$ and let $C_0$ be the midpoint of $AB$. Let $D$ be the foot of the altitude from $A$ and let $G$ be the centroid of the triangle $ABC$. Let $\omega$ be a circle through $B_0$ and $C_0$ that is tangent to the circle $\Omega$ at a point $X\not= A$. Prove that the points $D,G$ and $X$ are collinear.

Proposed by Ismail Isaev and Mikhail Isaev, Russia
126 replies
WakeUp
Jul 13, 2012
NuMBeRaToRiC
Yesterday at 6:12 PM
<DPA+ <AQD =< QIP wanted, incircle circumcircle related
parmenides51   42
N Yesterday at 6:09 PM by AR17296174
Source: IMo 2019 SL G6
Let $I$ be the incentre of acute-angled triangle $ABC$. Let the incircle meet $BC, CA$, and $AB$ at $D, E$, and $F,$ respectively. Let line $EF$ intersect the circumcircle of the triangle at $P$ and $Q$, such that $F$ lies between $E$ and $P$. Prove that $\angle DPA + \angle AQD =\angle QIP$.

(Slovakia)
42 replies
parmenides51
Sep 22, 2020
AR17296174
Yesterday at 6:09 PM
Help my diagram has too many points
MarkBcc168   28
N Yesterday at 6:06 PM by AR17296174
Source: IMO Shortlist 2023 G6
Let $ABC$ be an acute-angled triangle with circumcircle $\omega$. A circle $\Gamma$ is internally tangent to $\omega$ at $A$ and also tangent to $BC$ at $D$. Let $AB$ and $AC$ intersect $\Gamma$ at $P$ and $Q$ respectively. Let $M$ and $N$ be points on line $BC$ such that $B$ is the midpoint of $DM$ and $C$ is the midpoint of $DN$. Lines $MP$ and $NQ$ meet at $K$ and intersect $\Gamma$ again at $I$ and $J$ respectively. The ray $KA$ meets the circumcircle of triangle $IJK$ again at $X\neq K$.

Prove that $\angle BXP = \angle CXQ$.

Kian Moshiri, United Kingdom
28 replies
MarkBcc168
Jul 17, 2024
AR17296174
Yesterday at 6:06 PM
A lot of circles
ryan17   8
N Yesterday at 6:05 PM by AR17296174
Source: 2019 Polish MO Finals
Denote by $\Omega$ the circumcircle of the acute triangle $ABC$. Point $D$ is the midpoint of the arc $BC$ of $\Omega$ not containing $A$. Circle $\omega$ centered at $D$ is tangent to the segment $BC$ at point $E$. Tangents to the circle $\omega$ passing through point $A$ intersect line $BC$ at points $K$ and $L$ such that points $B, K, L, C$ lie on the line $BC$ in that order. Circle $\gamma_1$ is tangent to the segments $AL$ and $BL$ and to the circle $\Omega$ at point $M$. Circle $\gamma_2$ is tangent to the segments $AK$ and $CK$ and to the circle $\Omega$ at point $N$. Lines $KN$ and $LM$ intersect at point $P$. Prove that $\sphericalangle KAP = \sphericalangle EAL$.
8 replies
ryan17
Jul 9, 2019
AR17296174
Yesterday at 6:05 PM
Number theory
XAN4   1
N Apr 22, 2025 by NTstrucker
Source: own
Prove that there exists infinitely many positive integers $x,y,z$ such that $x,y,z\ne1$ and $x^x\cdot y^y=z^z$.
1 reply
XAN4
Apr 20, 2025
NTstrucker
Apr 22, 2025
Number theory
G H J
Source: own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
XAN4
60 posts
#1
Y by
Prove that there exists infinitely many positive integers $x,y,z$ such that $x,y,z\ne1$ and $x^x\cdot y^y=z^z$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
NTstrucker
163 posts
#2
Y by
https://www.mathnet.ru/links/a298bf5eafa2440220a2e98417c92670/tm2337.pdf
This post has been edited 1 time. Last edited by NTstrucker, Apr 22, 2025, 10:33 AM
Z K Y
N Quick Reply
G
H
=
a