Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
Geometry
Lukariman   3
N an hour ago by Lukariman
Given circle (O) and point P outside (O). From P draw tangents PA and PB to (O) with contact points A, B. On the opposite ray of ray BP, take point M. The circle circumscribing triangle APM intersects (O) at the second point D. Let H be the projection of B on AM. Prove that $\angle HDM$ = 2∠AMP.
3 replies
1 viewing
Lukariman
Yesterday at 12:43 PM
Lukariman
an hour ago
Maximum number of terms in the sequence
orl   11
N 2 hours ago by navier3072
Source: IMO LongList, Vietnam 1, IMO 1977, Day 1, Problem 2
In a finite sequence of real numbers the sum of any seven successive terms is negative and the sum of any eleven successive terms is positive. Determine the maximum number of terms in the sequence.
11 replies
orl
Nov 12, 2005
navier3072
2 hours ago
Combinatorics
P162008   2
N 2 hours ago by cazanova19921
Let $m,n \in \mathbb{N}.$ Let $[n]$ denote the set of natural numbers less than or equal to $n.$

Let $f(m,n) = \sum_{(x_1,x_2,x_3, \cdots, x_m) \in [n]^{m}} \frac{x_1}{x_1 + x_2 + x_3 + \cdots + x_m} \binom{n}{x_1} \binom{n}{x_2} \binom{n}{x_3} \cdots \binom{n}{x_m} 2^{\left(\sum_{i=1}^{m} x_i\right)}$

Compute the sum of the digits of $f(4,4).$
2 replies
P162008
3 hours ago
cazanova19921
2 hours ago
USAMO 2003 Problem 1
MithsApprentice   68
N 2 hours ago by Mamadi
Prove that for every positive integer $n$ there exists an $n$-digit number divisible by $5^n$ all of whose digits are odd.
68 replies
MithsApprentice
Sep 27, 2005
Mamadi
2 hours ago
Centroid, altitudes and medians, and concyclic points
BR1F1SZ   3
N 2 hours ago by EeEeRUT
Source: Austria National MO Part 1 Problem 2
Let $\triangle{ABC}$ be an acute triangle with $BC > AC$. Let $S$ be the centroid of triangle $ABC$ and let $F$ be the foot of the perpendicular from $C$ to side $AB$. The median $CS$ intersects the circumcircle $\gamma$ of triangle $\triangle{ABC}$ at a second point $P$. Let $M$ be the point where $CS$ intersects $AB$. The line $SF$ intersects the circle $\gamma$ at a point $Q$, such that $F$ lies between $S$ and $Q$. Prove that the points $M,P,Q$ and $F$ lie on a circle.

(Karl Czakler)
3 replies
BR1F1SZ
Monday at 9:45 PM
EeEeRUT
2 hours ago
IMO Genre Predictions
ohiorizzler1434   60
N 2 hours ago by Yiyj
Everybody, with IMO upcoming, what are you predictions for the problem genres?


Personally I predict: predict
60 replies
ohiorizzler1434
May 3, 2025
Yiyj
2 hours ago
square root problem
kjhgyuio   5
N 3 hours ago by Solar Plexsus
........
5 replies
kjhgyuio
May 3, 2025
Solar Plexsus
3 hours ago
Diodes and usamons
v_Enhance   47
N 3 hours ago by EeEeRUT
Source: USA December TST for the 56th IMO, by Linus Hamilton
A physicist encounters $2015$ atoms called usamons. Each usamon either has one electron or zero electrons, and the physicist can't tell the difference. The physicist's only tool is a diode. The physicist may connect the diode from any usamon $A$ to any other usamon $B$. (This connection is directed.) When she does so, if usamon $A$ has an electron and usamon $B$ does not, then the electron jumps from $A$ to $B$. In any other case, nothing happens. In addition, the physicist cannot tell whether an electron jumps during any given step. The physicist's goal is to isolate two usamons that she is sure are currently in the same state. Is there any series of diode usage that makes this possible?

Proposed by Linus Hamilton
47 replies
v_Enhance
Dec 17, 2014
EeEeRUT
3 hours ago
3-var inequality
sqing   1
N 3 hours ago by sqing
Source: Own
Let $ a,b\geq  0 ,a^3-ab+b^3=1  $. Prove that
$$  \frac{1}{2}\geq     \frac{a}{a^2+3 }+ \frac{b}{b^2+3}   \geq  \frac{1}{4}$$$$  \frac{1}{2}\geq     \frac{a}{a^3+3 }+ \frac{b}{b^3+3}   \geq  \frac{1}{4}$$$$  \frac{1}{2}\geq \frac{a}{a^2+ab+2}+ \frac{b}{b^2+ ab+2}  \geq  \frac{1}{3}$$$$  \frac{1}{2}\geq \frac{a}{a^3+ab+2}+ \frac{b}{b^3+ ab+2}  \geq  \frac{1}{3}$$Let $ a,b\geq  0 ,a^3+ab+b^3=3  $. Prove that
$$  \frac{1}{2}\geq     \frac{a}{a^2+3 }+ \frac{b}{b^2+3}   \geq  \frac{1}{4}(\frac{1}{\sqrt[3]{3}}+\sqrt[3]{3}-1)$$$$  \frac{1}{2}\geq     \frac{a}{a^3+3 }+ \frac{b}{b^3+3}   \geq  \frac{1}{2\sqrt[3]{9}}$$$$  \frac{1}{2}\geq \frac{a}{a^2+ab+2}+ \frac{b}{b^2+ ab+2}  \geq  \frac{4\sqrt[3]{3}+3\sqrt[3]{9}-6}{17}$$$$  \frac{1}{2}\geq \frac{a}{a^3+ab+2}+ \frac{b}{b^3+ ab+2}  \geq  \frac{\sqrt[3]{3}}{5}$$
1 reply
sqing
4 hours ago
sqing
3 hours ago
IMO ShortList 2001, combinatorics problem 3
orl   37
N 4 hours ago by deduck
Source: IMO ShortList 2001, combinatorics problem 3, HK 2009 TST 2 Q.2
Define a $ k$-clique to be a set of $ k$ people such that every pair of them are acquainted with each other. At a certain party, every pair of 3-cliques has at least one person in common, and there are no 5-cliques. Prove that there are two or fewer people at the party whose departure leaves no 3-clique remaining.
37 replies
orl
Sep 30, 2004
deduck
4 hours ago
area of O_1O_2O_3O_4 <=1, incenters of right triangles outside a square
parmenides51   2
N 4 hours ago by Solilin
Source: Thailand Mathematical Olympiad 2012 p4
Let $ABCD$ be a unit square. Points $E, F, G, H$ are chosen outside $ABCD$ so that $\angle AEB =\angle BF C = \angle CGD = \angle DHA = 90^o$ . Let $O_1, O_2, O_3, O_4$, respectively, be the incenters of $\vartriangle ABE, \vartriangle BCF, \vartriangle CDG, \vartriangle DAH$. Show that the area of $O_1O_2O_3O_4$ is at most $1$.
2 replies
parmenides51
Aug 17, 2020
Solilin
4 hours ago
n variables with n-gon sides
mihaig   0
Apr 25, 2025
Source: Own
Let $n\geq3$ and let $a_1,a_2,\ldots, a_n\geq0$ be reals such that $\sum_{i=1}^{n}{\frac{1}{2a_i+n-2}}=1.$
Prove
$$\frac{24}{(n-1)(n-2)}\cdot\sum_{1\leq i<j<k\leq n}{a_ia_ja_k}\geq3\sum_{i=1}^{n}{a_i}+n.$$
0 replies
mihaig
Apr 25, 2025
0 replies
n variables with n-gon sides
G H J
G H BBookmark kLocked kLocked NReply
Source: Own
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mihaig
7360 posts
#1
Y by
Let $n\geq3$ and let $a_1,a_2,\ldots, a_n\geq0$ be reals such that $\sum_{i=1}^{n}{\frac{1}{2a_i+n-2}}=1.$
Prove
$$\frac{24}{(n-1)(n-2)}\cdot\sum_{1\leq i<j<k\leq n}{a_ia_ja_k}\geq3\sum_{i=1}^{n}{a_i}+n.$$
Z K Y
N Quick Reply
G
H
=
a