Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Geometry
smartvong   1
N a minute ago by Funcshun840
Source: UM Mathematical Olympiad 2024
Let $P$ be a point inside a triangle $ABC$. Let $AP$ meet $BC$ at $A_1$, let $BP$ meet $CA$ at $B_1$, and let $CP$ meet $AB$ at $C_1$. Let $A_2$ be the point such that $A_1$ is the midpoint of $PA_2$, let $B_2$ be the point such that $B_1$ is the midpoint of $PB_2$, and let $C_2$ be the point such that $C_1$ is the midpoint of $PC_2$. Prove that points $A_2, B_2, C_2$ cannot all lie strictly inside the circumcircle of triangle $ABC$.
1 reply
smartvong
Today at 12:58 AM
Funcshun840
a minute ago
integer functional equation
ABCDE   150
N 26 minutes ago by youochange
Source: 2015 IMO Shortlist A2
Determine all functions $f:\mathbb{Z}\rightarrow\mathbb{Z}$ with the property that \[f(x-f(y))=f(f(x))-f(y)-1\]holds for all $x,y\in\mathbb{Z}$.
150 replies
ABCDE
Jul 7, 2016
youochange
26 minutes ago
min A=x+1/x+y+1/y if 2(x+y)=1+xy for x,y>0 , 2020 ISL A3 for juniors
parmenides51   13
N 29 minutes ago by AylyGayypow009
Source: 2021 Greece JMO p1 (serves also as JBMO TST) / based on 2020 IMO ISL A3
If positive reals $x,y$ are such that $2(x+y)=1+xy$, find the minimum value of expression $$A=x+\frac{1}{x}+y+\frac{1}{y}$$
13 replies
parmenides51
Jul 21, 2021
AylyGayypow009
29 minutes ago
Thailand MO 2025 P3
Kaimiaku   3
N 33 minutes ago by EeEeRUT
Let $a,b,c,x,y,z$ be positive real numbers such that $ay+bz+cx \le az+bx+cy$. Prove that $$ \frac{xy}{ax+bx+cy}+\frac{yz}{by+cy+az}+\frac{zx}{cz+az+bx} \le \frac{x+y+z}{a+b+c}$$
3 replies
+1 w
Kaimiaku
3 hours ago
EeEeRUT
33 minutes ago
No more topics!
Common chord bisects segment
mofumofu   11
N Apr 19, 2025 by sttsmet
Source: China TSTST 3 Day 1 Q2
Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.
11 replies
mofumofu
Mar 18, 2017
sttsmet
Apr 19, 2025
Common chord bisects segment
G H J
Source: China TSTST 3 Day 1 Q2
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mofumofu
179 posts
#1 • 10 Y
Y by rkm0959, anantmudgal09, baopbc, ThE-dArK-lOrD, guangzhou-2015, buratinogigle, nguyendangkhoa17112003, Ya_pank, Adventure10, Rounak_iitr
Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
TelvCohl
2312 posts
#2 • 16 Y
Y by baopbc, Ankoganit, smy2012, dagezjm, Saro00, guangzhou-2015, zed1969, anantmudgal09, Mosquitall, enhanced, nguyendangkhoa17112003, Gaussian_cyber, AllanTian, JG666, Adventure10, thinkcow
Let $ \widetilde{A}, $ $ \widetilde{D} $ be the isogonal conjugate of $ A, $ $ D $ WRT $ \triangle BCD, $ $ \triangle ABC, $ respectively. Clearly, $ \widetilde{A} $ and $ \widetilde{D} $ are symmetry WRT $ BC, $ so one of the intersection $ U $ of $ \odot (PQR) $ and $ \odot (XYZ) $ lies on $ BC. $ Let $ V $ be the second intersection of these two circles, then note that $ ( A,B,P,Q ) $ and $ ( B,D,Y,Z ) $ are concyclic we get $$ \measuredangle ZVQ = \measuredangle ZYU + \measuredangle UPQ = \measuredangle ZDB + \measuredangle BAQ = 2\measuredangle ABD \ , $$hence $ V $ lies on the 9-point circle of $ \triangle ABD. $ Let $ M $ be the midpoint of $ BH. $ Since $ M, $ $ Q, $ $ V, $ $ Z $ are concyclic (the 9-point circle of $ \triangle ABD $), so we conclude that $$ \measuredangle MVQ = \measuredangle BAQ = \measuredangle UPQ = \measuredangle UVQ \Longrightarrow M \ \text{lies on} \ UV \ . $$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
bobthesmartypants
4337 posts
#3 • 3 Y
Y by anantmudgal09, Adventure10, Mango247
solution

EDIT: 4321st post woo
This post has been edited 1 time. Last edited by bobthesmartypants, Aug 31, 2017, 7:08 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
anantmudgal09
1980 posts
#5 • 2 Y
Y by Adventure10, Mango247
I think that this solution is a bit different from others posted here. Not that hard a problem with the knowledge of circumrectangular hyperbolas, especially with geogebra by your side :D
mofumofu wrote:
Let $ABCD$ be a non-cyclic convex quadrilateral. The feet of perpendiculars from $A$ to $BC,BD,CD$ are $P,Q,R$ respectively, where $P,Q$ lie on segments $BC,BD$ and $R$ lies on $CD$ extended. The feet of perpendiculars from $D$ to $AC,BC,AB$ are $X,Y,Z$ respectively, where $X,Y$ lie on segments $AC,BC$ and $Z$ lies on $BA$ extended. Let the orthocenter of $\triangle ABD$ be $H$. Prove that the common chord of circumcircles of $\triangle PQR$ and $\triangle XYZ$ bisects $BH$.

First we clear up our notation a bit. Consider the equivalent problem:

China TST 2017 #2, morally correct notation wrote:
Let $ABCP$ be a non-cyclic quadrilateral and $\mathcal{H}$ denote the rectangular hyperbola circumscribing them. Let $H_B$ be the orthocenter of triangle $ABP$. Let $\omega_1$ be the pedal circle of $P$ wrt $\triangle ABC$ and $\omega_2$ be the pedal circle of $A$ wrt $\triangle BCP$. Prove that the radical axis (or common chord) of $\omega_1, \omega_2$ passes through the mid-point of $\overline{BH_B}$.

For convenience, suppose $P$ lies in the interior of $\triangle ABC$. The general case can be accounted for by directing angles accordingly. Now let $Z$ be the center of $\mathcal{H}$ and $P_A, P_B, P_C$ be the projections of $P$ on $\overline{BC}, \overline{CA}, \overline{AB}$ respectively. Let $\odot(P_AP_BP_C)$ meet the sides $\overline{BC}, \overline{CA}, \overline{AB}$ again at $Q_A,Q_B,Q_C$ respectively.

Let $M$ be the midpoint of $\overline{BH_B}$ and $P_B'=\overline{AP} \cap \overline{BH_B}$. Then $H_B \in \mathcal{H} \implies Z \in \odot(P_BMP_B')$.

Claim. $\overline{ZQ_A}$ is the common chord of $\omega_1, \omega_2$ (in fact these two points lie on both the circles).

(Proof) Observe that $Z$ is a common point due to the fundamental theorem and $Q_A \in \omega_1$. So let $A'$ be the isogonal conjugate of $A$ wrt $\triangle BPC$; and $P'$ be the isogonal conjugate of $P$ wrt $\triangle ABC$. Then $A', P'$ are symmetric in $\overline{BC}$. Consequently, $Q_A$ lies on the pedal circle $\omega_2$ of $A'$ wrt $\triangle BPC$, as desired. $\blacksquare$

Finally, we see $$\angle P_BZQ_A=\angle P_BP_AB=90^{\circ}-\angle ABP$$and $$\angle P_BZM=\angle P_BP_B'B=90^{\circ}-\angle ABP$$hence $M$ lies on $\overline{ZQ_A}$, as desired. $\blacksquare$

P.S. 1400th post! :)
This post has been edited 1 time. Last edited by anantmudgal09, Oct 27, 2017, 4:42 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
nguyenhaan2209
111 posts
#6 • 3 Y
Y by top1csp2020, JG666, Adventure10
ZR-BC=U then XZU=XAR=XYC so UXYZ cyclic, similarly QXU collinear so RQU=RZX=RAC=RPC so UPQR cyclic hence ZVQ=ZVU-UVQ=ZYU-UPQ=180-ZDB-QB=ZMQ so MVQ+QVU=180-MZQ+QAB=180 so q.e.d
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
mathaddiction
308 posts
#7
Y by
Notice that $Z,Q,X,R$ all lies on the circle with diameter $AD$. Denote this circle by $\omega$.Let $N$ be the midpoint of $AD$. Let $M$ be the midpoint of $BH$. Suppose $ZX$ and $QR$ meet at $G$, and $ZR$ and $QX$ meet at $I$.
CLAIM. Both $I$ and $G$ lies on the common chord
Proof. Applying radical axis theorem to $(PQR)$, $(XYZ)$ and $\omega$ we see that $G$ is the radical center of the three circles hence lying on the common chord. Now
$$\angle QIR=\angle ZRQ-\angle XQR=\angle BAQ-(90^{\circ}-\angle ACD)=\angle QPC-\angle RPC=\angle QPR$$hence $I$ lies on $(PQR)$. By symmetry it lies on $(XYZ)$ as well. This justfies our claim.

Now notice that $\angle MQB+\angle NQD=\angle MBQ+\angle NQD=90^{\circ}$. Therefore $MZ$ and $MQ$ are both tangent to $\omega$. Let $ZQ$ and $DX$ meet at $J$. Then $J$ lies on $ZQ$, the polar of $M$ w.r.t. $\omega$. Hence by La Hire's theorem, $M$ lies on the polar of $J$. w.r.t. $\omega$, that is, $GI$ by Brokard's theorem.
This shows that the common chord of the two circles bisect $BH$.
This post has been edited 2 times. Last edited by mathaddiction, Jul 18, 2020, 11:47 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Plops
946 posts
#8
Y by
Pascal's on $\odot (AZRDXQ)$, $ZR \cap QX \cap PY=I'_2$. Let $U=AD \cap BC$, $V=ZQ \cap RX$, and assume $AB<CD$. By simple angle chasing, we see

$$\angle RI_2B=\angle RAD-\angle ZDA+\angle DUC=\angle ADC-\angle DAB+\angle DAB+\angle CBA-\pi=\angle ADC+\angle CBA-\pi=\pi-\angle AQD+\pi-\angle PQA-\pi=\pi-\angle AQD-\angle PQA=\pi-\angle PQR$$
so $\odot (I'_2PQR)$ is cyclic, and similarly, $\odot (I'_2YXZ)$ is cyclic. Let $M$ be the midpoint of $BH$. Then, $MH=MZ=MQ=MB$, and

$$\angle MZB= \angle MBZ=\frac{\pi}{2}-\angle ZAD=\angle ZDA$$
so $MZ, MQ$ are tangent to circle $\odot (AZRDXQ)$, and $M$ lies on the polar of $V$ w.r.t. $\odot (AZRDXQ)$, which, by Brokard's theorem, is $I_1I_2$, the radical axis of $\odot (XYZ)$ and $\odot (PQR)$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
KST2003
173 posts
#10
Y by
Let $K$ be the orthocenter of $\triangle ACD$, and let $M$ and $N$ be the midpoints of $BH$ and $CK$.

Claim: $\overline{HK}, \overline{BC}$ and $\overline{ZR}$ are concurrent one of the intersections of $(PQR)$ and $(XYZ)$, say $S$.

Proof. Let $U=\overline{KR}\cap\overline{HZ}$, and $V=\overline{CR}\cap\overline{BZ}$. Then as $D$ is the orthocenter of $\triangle AUV$, $UV\parallel CK\parallel BH$. Hence $\triangle KRC$ and $\triangle HZB$ are perspective and the concurrency follows. Now it is left to show that this point lies on both circles. Since $ZAQR$ and $BAQP$ are cyclic, by Miquel's theorem it follows that $S$ lies on $(PQR)$. Similarly, $S$ lies on $(XYZ)$ so we are done. $\square$

Now as $BH\parallel CK$ it follows by homothety that $\overline{MN}$ passes through $S$. Consider a rectangular circumhyperbola $\mathcal{H}$ passing through $A,B,C,D,H$. Obviously, this passes through $K$ as well. Let $T$ be the center of this hyperbola. Then by the fundamental theorem, this must be the other intersection point of $(PQR)$ and $(XYZ)$ (Configuration issues can be dealt without much difficulty). Since $BH$ and $CK$ are parallel chords of a conic, it follows that $\overline{MN}$ passes through $T$, so it must be the radical axis of $(PQR)$ and $(XYZ)$ as desired. $\square$
This post has been edited 1 time. Last edited by KST2003, Jun 6, 2021, 6:29 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cronus119
74 posts
#11
Y by
casey theorem for distance $H,B$ with radical axis of circles $\odot XYZ$,$\odot PQR$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ChanandlerBong
44 posts
#12
Y by
Denote by $\Omega$ the circle passing through $A,Z,R,D,X,Q$.
By Pascal's theorem on $(ZRDQXA)$, we have that $L:=ZR \cap QX$ lies on line $BC$. Simple angle chasing indicates that $L$ is one of the intersections of circles $(PQR)$ and $(XYZ)$.
Consider the radical axis of $\Omega$, $(PQR)$ and $(XYZ)$, we have $S:=XZ\cap RQ$ lies on the radical axis of $(PQR)$ and $(XYZ)$, which we denote by $l$. Thus now we conclude that $l$ is line $SL$, so we only have to prove that the $M$ , the midpoint of segment $BH$, lies on $SL$.
To finish, it is well-known that $M$ is the pole of line $QZ$ with respect to $\Omega$, therefore apply Pascal's theorem on $(ZZRQQX)$, and then we are done!:P
This post has been edited 2 times. Last edited by ChanandlerBong, Dec 10, 2022, 3:05 AM
Reason: .
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
trinhquockhanh
522 posts
#13 • 1 Y
Y by Rounak_iitr
$\text{a good problem for training the \textit{Pascal theorem}, but it is a bit easy for China TST}$
https://i.ibb.co/340Wpbq/2017-China-TST-R3-D1-P2.png
geogebra solution link
This post has been edited 5 times. Last edited by trinhquockhanh, Aug 9, 2023, 1:49 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sttsmet
139 posts
#14
Y by
Allow me to disagree with the above comment! This is a very beautiful problem, well placed as a P2. It's difficulty relies mostly on drawing a good diagram on paper (sth you may haven't noticed through geogebra) as well as keeping it clear from the many lines/circles that seem tempting.
This post has been edited 1 time. Last edited by sttsmet, Apr 19, 2025, 3:40 PM
Z K Y
N Quick Reply
G
H
=
a