We have your learning goals covered with Spring and Summer courses available. Enroll today!

G
Topic
First Poster
Last Poster
k a March Highlights and 2025 AoPS Online Class Information
jlacosta   0
Mar 2, 2025
March is the month for State MATHCOUNTS competitions! Kudos to everyone who participated in their local chapter competitions and best of luck to all going to State! Join us on March 11th for a Math Jam devoted to our favorite Chapter competition problems! Are you interested in training for MATHCOUNTS? Be sure to check out our AMC 8/MATHCOUNTS Basics and Advanced courses.

Are you ready to level up with Olympiad training? Registration is open with early bird pricing available for our WOOT programs: MathWOOT (Levels 1 and 2), CodeWOOT, PhysicsWOOT, and ChemWOOT. What is WOOT? WOOT stands for Worldwide Online Olympiad Training and is a 7-month high school math Olympiad preparation and testing program that brings together many of the best students from around the world to learn Olympiad problem solving skills. Classes begin in September!

Do you have plans this summer? There are so many options to fit your schedule and goals whether attending a summer camp or taking online classes, it can be a great break from the routine of the school year. Check out our summer courses at AoPS Online, or if you want a math or language arts class that doesn’t have homework, but is an enriching summer experience, our AoPS Virtual Campus summer camps may be just the ticket! We are expanding our locations for our AoPS Academies across the country with 15 locations so far and new campuses opening in Saratoga CA, Johns Creek GA, and the Upper West Side NY. Check out this page for summer camp information.

Be sure to mark your calendars for the following events:
[list][*]March 5th (Wednesday), 4:30pm PT/7:30pm ET, HCSSiM Math Jam 2025. Amber Verser, Assistant Director of the Hampshire College Summer Studies in Mathematics, will host an information session about HCSSiM, a summer program for high school students.
[*]March 6th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar on Math Competitions from elementary through high school. Join us for an enlightening session that demystifies the world of math competitions and helps you make informed decisions about your contest journey.
[*]March 11th (Tuesday), 4:30pm PT/7:30pm ET, 2025 MATHCOUNTS Chapter Discussion MATH JAM. AoPS instructors will discuss some of their favorite problems from the MATHCOUNTS Chapter Competition. All are welcome!
[*]March 13th (Thursday), 4:00pm PT/7:00pm ET, Free Webinar about Summer Camps at the Virtual Campus. Transform your summer into an unforgettable learning adventure! From elementary through high school, we offer dynamic summer camps featuring topics in mathematics, language arts, and competition preparation - all designed to fit your schedule and ignite your passion for learning.[/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Sunday, Mar 2 - Jun 22
Friday, Mar 28 - Jul 18
Sunday, Apr 13 - Aug 10
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Tuesday, Mar 25 - Jul 8
Sunday, Apr 13 - Aug 10
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21


Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, Mar 23 - Jul 20
Monday, Apr 7 - Jul 28
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Sunday, Mar 16 - Jun 8
Wednesday, Apr 16 - Jul 2
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Monday, Mar 17 - Jun 9
Thursday, Apr 17 - Jul 3
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Sunday, Mar 2 - Jun 22
Wednesday, Apr 16 - Jul 30
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Tuesday, Mar 4 - Aug 12
Sunday, Mar 23 - Sep 21
Wednesday, Apr 23 - Oct 1
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Mar 16 - Sep 14
Tuesday, Mar 25 - Sep 2
Monday, Apr 21 - Oct 13
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Sunday, Mar 23 - Aug 3
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Friday, Apr 11 - Jun 27
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Sunday, Mar 16 - Aug 24
Wednesday, Apr 9 - Sep 3
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Wednesday, Mar 5 - May 21
Tuesday, Jun 10 - Aug 26

Calculus
Sunday, Mar 30 - Oct 5
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Sunday, Mar 23 - Jun 15
Wednesday, Apr 16 - Jul 2
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Friday, Apr 11 - Jun 27
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Tuesday, Mar 4 - May 20
Monday, Mar 31 - Jun 23
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Monday, Mar 24 - Jun 16
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Sunday, Mar 30 - Jun 22
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Tuesday, Mar 25 - Sep 2
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Sat & Sun, Apr 26 - Apr 27 (4:00 - 7:00 pm ET/1:00 - 4:00pm PT)
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
Mar 2, 2025
0 replies
k i Adding contests to the Contest Collections
dcouchman   1
N Apr 5, 2023 by v_Enhance
Want to help AoPS remain a valuable Olympiad resource? Help us add contests to AoPS's Contest Collections.

Find instructions and a list of contests to add here: https://artofproblemsolving.com/community/c40244h1064480_contests_to_add
1 reply
dcouchman
Sep 9, 2019
v_Enhance
Apr 5, 2023
k i Zero tolerance
ZetaX   49
N May 4, 2019 by NoDealsHere
Source: Use your common sense! (enough is enough)
Some users don't want to learn, some other simply ignore advises.
But please follow the following guideline:


To make it short: ALWAYS USE YOUR COMMON SENSE IF POSTING!
If you don't have common sense, don't post.


More specifically:

For new threads:


a) Good, meaningful title:
The title has to say what the problem is about in best way possible.
If that title occured already, it's definitely bad. And contest names aren't good either.
That's in fact a requirement for being able to search old problems.

Examples:
Bad titles:
- "Hard"/"Medium"/"Easy" (if you find it so cool how hard/easy it is, tell it in the post and use a title that tells us the problem)
- "Number Theory" (hey guy, guess why this forum's named that way¿ and is it the only such problem on earth¿)
- "Fibonacci" (there are millions of Fibonacci problems out there, all posted and named the same...)
- "Chinese TST 2003" (does this say anything about the problem¿)
Good titles:
- "On divisors of a³+2b³+4c³-6abc"
- "Number of solutions to x²+y²=6z²"
- "Fibonacci numbers are never squares"


b) Use search function:
Before posting a "new" problem spend at least two, better five, minutes to look if this problem was posted before. If it was, don't repost it. If you have anything important to say on topic, post it in one of the older threads.
If the thread is locked cause of this, use search function.

Update (by Amir Hossein). The best way to search for two keywords in AoPS is to input
[code]+"first keyword" +"second keyword"[/code]
so that any post containing both strings "first word" and "second form".


c) Good problem statement:
Some recent really bad post was:
[quote]$lim_{n\to 1}^{+\infty}\frac{1}{n}-lnn$[/quote]
It contains no question and no answer.
If you do this, too, you are on the best way to get your thread deleted. Write everything clearly, define where your variables come from (and define the "natural" numbers if used). Additionally read your post at least twice before submitting. After you sent it, read it again and use the Edit-Button if necessary to correct errors.


For answers to already existing threads:


d) Of any interest and with content:
Don't post things that are more trivial than completely obvious. For example, if the question is to solve $x^{3}+y^{3}=z^{3}$, do not answer with "$x=y=z=0$ is a solution" only. Either you post any kind of proof or at least something unexpected (like "$x=1337, y=481, z=42$ is the smallest solution). Someone that does not see that $x=y=z=0$ is a solution of the above without your post is completely wrong here, this is an IMO-level forum.
Similar, posting "I have solved this problem" but not posting anything else is not welcome; it even looks that you just want to show off what a genius you are.

e) Well written and checked answers:
Like c) for new threads, check your solutions at least twice for mistakes. And after sending, read it again and use the Edit-Button if necessary to correct errors.



To repeat it: ALWAYS USE YOUR COMMON SENSE IF POSTING!


Everything definitely out of range of common sense will be locked or deleted (exept for new users having less than about 42 posts, they are newbies and need/get some time to learn).

The above rules will be applied from next monday (5. march of 2007).
Feel free to discuss on this here.
49 replies
ZetaX
Feb 27, 2007
NoDealsHere
May 4, 2019
Geometry solutions needed of pathfinder senior
SHIVAM_OP-IMO2025   0
14 minutes ago
Someone plzz share pathfinder senior by vikas tiwari solutions..
0 replies
SHIVAM_OP-IMO2025
14 minutes ago
0 replies
new playlist in Olympiad Geometry Channel
Plane_geometry_youtuber   3
N 16 minutes ago by SHIVAM_OP-IMO2025
Hi,

I create a new playlist called "Problems from Audience". I will put my solution of the problems from audience into this playlist. Welcome to send me your problems and doubts.

https://www.youtube.com/@OlympiadGeometry-2024

my email: planery.geometry@gmail.com
3 replies
Plane_geometry_youtuber
Jan 28, 2025
SHIVAM_OP-IMO2025
16 minutes ago
Prove that $\angle FAC = \angle EDB$
micliva   26
N 20 minutes ago by cappucher
Source: All-Russian Olympiad 1996, Grade 10, First Day, Problem 1
Points $E$ and $F$ are given on side $BC$ of convex quadrilateral $ABCD$ (with $E$ closer than $F$ to $B$). It is known that $\angle BAE = \angle CDF$ and $\angle EAF = \angle FDE$. Prove that $\angle FAC = \angle EDB$.

M. Smurov
26 replies
micliva
Apr 18, 2013
cappucher
20 minutes ago
Find all m,n such that...
srnjbr   0
an hour ago
Suppose that m,n are in natural numbers. find all m,n that (m^n-n)^m=n!+m
0 replies
srnjbr
an hour ago
0 replies
sequence and number theory
srnjbr   0
an hour ago
Let a1 be a member of the integers and an+1=an^2-an-1. Show that (an+1,2n+1)=1
0 replies
srnjbr
an hour ago
0 replies
2022 Junior Balkan MO, Problem 1
sarjinius   25
N an hour ago by anudeep
Source: 2022 JBMO Problem 1
Find all pairs of positive integers $(a, b)$ such that $$11ab \le a^3 - b^3 \le 12ab.$$
25 replies
1 viewing
sarjinius
Jun 30, 2022
anudeep
an hour ago
Nice function question
srnjbr   0
an hour ago
Find all functions f:R+--R+ such that for all a,b>0, f(af(b)+a)(f(bf(a))+a)=1
0 replies
srnjbr
an hour ago
0 replies
Find min
hunghd8   6
N an hour ago by imnotgoodatmathsorry
Let $a,b,c$ be nonnegative real numbers such that $ a+b+c\geq 2+abc $. Find min
$$P=a^2+b^2+c^2.$$
6 replies
hunghd8
Yesterday at 12:10 PM
imnotgoodatmathsorry
an hour ago
Interesting inequality
sqing   1
N 2 hours ago by ionbursuc
Source: Own
Let $ a,b> 0$ and $ a+b=1 . $ Prove that
$$ \frac{1}{a}+\frac{1}{b}\geq \frac{2k}{1+k^2 a^2b^2}$$Where $ 5\leq k\in N^+.$
1 reply
sqing
2 hours ago
ionbursuc
2 hours ago
Integral with dt
RenheMiResembleRice   0
3 hours ago
Source: Yanxue Lu
Solve the attached:
0 replies
RenheMiResembleRice
3 hours ago
0 replies
Inequality
srnjbr   1
N 3 hours ago by sqing
a^2+b^2+c^2+x^2+y^2=1. Find the maximum value of the expression (ax+by)^2+(bx+cy)^2
1 reply
srnjbr
Yesterday at 4:32 PM
sqing
3 hours ago
9 Three concurrent chords
v_Enhance   3
N 3 hours ago by ohiorizzler1434
Three distinct circles $\Omega_1$, $\Omega_2$, $\Omega_3$ cut three common chords concurrent at $X$. Consider two distinct circles $\Gamma_1$, $\Gamma_2$ which are internally tangent to all $\Omega_i$. Determine, with proof, which of the following two statements is true.

(1) $X$ is the insimilicenter of $\Gamma_1$ and $\Gamma_2$
(2) $X$ is the exsimilicenter of $\Gamma_1$ and $\Gamma_2$.
3 replies
1 viewing
v_Enhance
Yesterday at 8:45 PM
ohiorizzler1434
3 hours ago
Mathhhhh
mathbetter   9
N 3 hours ago by ohiorizzler1434
Three turtles are crawling along a straight road heading in the same
direction. "Two other turtles are behind me," says the first turtle. "One turtle is
behind me and one other is ahead," says the second. "Two turtles are ahead of me
and one other is behind," says the third turtle. How can this be possible?
9 replies
mathbetter
Thursday at 11:21 AM
ohiorizzler1434
3 hours ago
An inequality about xy+yz+zx+2xyz=1
jokehim   0
4 hours ago
Source: my problem
Problem. Let $x,y,z>0: xy+yz+zx+2xyz=1.$ Prove that$$\frac{1}{6x+1}+\frac{1}{6y+1}+\frac{1}{6z+1}\ge \frac{9(xy+yz+zx)-3}{5}.$$Proposed by Phan Ngoc Chau
0 replies
jokehim
4 hours ago
0 replies
Easy IMO 2023 NT
799786   131
N Thursday at 12:54 PM by Jupiterballs
Source: IMO 2023 P1
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
131 replies
799786
Jul 8, 2023
Jupiterballs
Thursday at 12:54 PM
Easy IMO 2023 NT
G H J
G H BBookmark kLocked kLocked NReply
Source: IMO 2023 P1
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Turker31
10 posts
#132 • 1 Y
Y by ehuseyinyigit
Answer : $n=p^x$ when $p$ is a prime and $x>1$ a natural number. It's so easy to see these form of solutions. We should look at for some other solutions. Firstly, assume that $n$ has two or more prime divisors.
the smallest prime divisors of $n$ be $p<q$.
Investigate the case that $p^x$ when $x>1$ and $p^x<q<p^{x+1}$. We can say,
$1=d_1$, $p=d_2$, .... , $p^x = d_{x+1}$, $q =d_{x+2}$.
From the given property,
$d_x| (d_{x+1}+d_{x+2})$. $=$ $p^{x-1}|(p^x + q)$.

Then, $(p^x+q)\equiv0\pmod{p}$

So, $p|q$ is impossible.

From this, we can say that $x=1$. Investigate this case :
If $x=1$, then $d_1=1 , d_2=p, d_3=q, .... , d_{k-2}=\frac{n}{q} , d_{k-1}=\frac{n}{p}$ and $d_k=n$.

$d_{k-2}|(d_{k-1}+d_k) = \frac{n}{q}|(\frac{n}{p} + n)$.

So, $p|(p+1)q$. Obviously, it's impossible.

$n$ can't have two or more prime divisors. $\square$
This post has been edited 55 times. Last edited by Turker31, Aug 9, 2024, 8:55 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cj13609517288
1869 posts
#134
Y by
The answer is $n=\boxed{p^k}$ for primes $p$ and positive integers $k\ge 2$ only. Clearly these work.

Note that $d_{k-2}\mid d_{k-1}+d_k$, so $d_{k-2}\mid d_{k-1}$. Since $d_2d_{k-1}=d_3d_{k-2}=n$, we get that $d_2\mid d_3$. Let $p=d_2$, then let $d_3=xp$. If $x\ne p$, $x$ would have been a smaller divisor, so $x=p$ exactly. Then we may induct to show that all terms of $\{d_i\}$ besides $d_1$ are divisible by $p$, meaning that $n$ has no other prime divisors, as desired. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ywgh1
136 posts
#135
Y by
IMO 2023 p1

We claim that the answer is $n=p^k$, where $p$ is a prime.

Let $p_1$ and $p_2$ be the first two primes of $n$. Now let $s$ be the largest number, such that $p_1^s < p_2$

So we have that
\[\frac{n}{p_2},\frac{n}{p_1^s},\frac{n}{p_1^{s-1}}\]are consecutive divisors of $n$.
Hence we must have that.
$$\frac{n}{p_2}|(\frac{n}{p_1^s}+\frac{n}{p_1^{s-1}}) \implies p_1^s|p_2(p_1+1)$$Which is a contradiction, hence $n$ has less than 2 primes.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ezpotd
1251 posts
#137
Y by
I claim the answer is only prime powers. It is easy to see that these work. To see nothing else works, assume for the sake of contradiction some $n$ with more than $1$ prime power worked. Then take the second smallest prime divisor, let it be $q$, and the largest divisor less than it, $p^{k}$, where $k$ can be $1$. We would then have $\frac nq \mid \frac{n}{p^{k - 1}} + \frac{n}{p^k}$, which is obviously not true by taking $\nu_p$ on both sides, the left side has $\nu_p(\frac nq) = \nu_p(n)$, right hand side has $\nu_p({\frac{n}{p^{k - 1}} + \frac{n}{p^k}}) = \nu_p({\frac{n}{p^k}})$, so the left side cannot divide the right.
This post has been edited 1 time. Last edited by ezpotd, Sep 30, 2024, 1:00 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
lelouchvigeo
172 posts
#139
Y by
Nothing new
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cursed_tangent1434
550 posts
#140
Y by
Trivial NT on the IMO. Finally found some time to actually post my solution from the contest.

We claim that the answer is all positive integers of the form $p^m$ for some prime $p$ and $m\ge 2$. These clearly all work since for all $1\le i \le m+1$ , $d_i=p^{i-1}$. Thus,
\[d_i=p_{i-1}\mid p_i + p_{i+1}=d_{i+1}+d_{i+2}\]quite clearly.

Now, we show that no other composite $n$ work. Say $n$ has atleast two distinct primes divisors, of which the smallest two are $p<q$. Note that we have $d_i = p^{i-1}$ for all $1\le i \le r$ for some $r \ge 2$ and $d_{r+1}=q$ as the divisors are arranged in increasing order. Now, if $n$ satisfies the desired condition we must have,
\begin{align*}
d_{m-r} &\mid d_{m-r+1} + d_{m-r+2}\\
\frac{n}{d_{r+1}} & \mid \frac{n}{d_r} + \frac{n}{d_{r-1}}\\
\frac{n}{q} & \mid \frac{n}{p^{r-1}} + \frac{n}{p^{r-2}}\\
p^{r-1} & \mid q + pq\\
p &\mid q+pq\\
p& \mid q
\end{align*}which is a very clear contradiction since $q>p$ are both primes. Thus, there are no such $n$ of this form, which finishes the proof.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
EVKV
36 posts
#141
Y by
Clear answer is n =p^c where p is a prime
Assume that n can have more than 1 prime factor and assume some prime q also divides n
Well you get that p|q contradiction.
Too easy for P1 tho
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
maths_enthusiast_0001
119 posts
#142
Y by
My first NT after decades..... :D
IMO 2023 P1 wrote:
Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.
All numbers of the form $p^l$ where $p$ is a prime and $l>1$ work evidently. We now show these are the only ones.
Let $m$ denote the number of divisors of $n$. Then we have $d_{i}d_{m+1-i}=n$. Thus,
$$d_{i} \mid d_{i+1}+d_{i+2}$$$$\implies \frac{n}{d_{m-i+1}} \mid \frac{n}{d_{m-i}}+\frac{n}{d_{m-i-1}}$$$$\implies d_{m-i}d_{m-i-1} \mid d_{m-i+1}(d_{m-i}+d_{m-i-1})$$$$\implies \boxed{d_{i}d_{i+1} \mid d_{i+2}(d_{i}+d_{i+1})}  [\because i \mapsto m-i-1]$$Now $i=1$ gives, $d_{1}d_{2} \mid d_{3}(d_{1}+d_{2}) \implies d_{2} \mid d_{3}$ since $d_{1}=1$. Also, $d_{2}$ is a prime number (say $p$). If $d_{3}$ has any prime factor $q$(say) other than $p$ then $d_{1}<q<d_{3};q \neq d_{2}$ which is a blatant contradiction. Thus $\boxed{d_{3}=p^{2}}$ as it can not be $p^e$ where $e \geq 3$ otherwise $d_{2} < p^{2} < d_{3}$ again, a contradiction. Now by an easy strong induction and similar argument we can conclude that $d_{i+1}=p^{i}$. Thus $n=p^{l}$ where $l>1$ and $p$ is a prime number. $\blacksquare$ ($\mathcal{QED}$)
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Rohit-2006
165 posts
#143
Y by
Suppose $n$ has a prime divisors $\geq 2$.

Say the least ones are $p$ and $q$ and $p$ be the minimum.

Let the multiplicity of $p$ be $m$.

At the $(k+1)$-th step, $k \leq m$:

$p^{k-1} < q$, so $q$ can write

$p^{k-1} \mid p^k + q \quad ( \rightarrow \leftarrow)$.

Hence, $n = p^t$, $t \in \mathbb{N}$ and $p$ is prime.
This post has been edited 2 times. Last edited by Rohit-2006, Jan 17, 2025, 10:34 AM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
iStud
257 posts
#144
Y by
Note that since $d_{k-2}\mid d_{k-1}+d_k$ and $d_{k-2}\mid n=d_k$, then $d_{k-2}\mid d_{k-1}$. Recall that $d_{k-2}=\frac{n}{d_3}$ and $d_{k-1}=\frac{n}{d_2}$, so $\frac{\frac{n}{d_2}}{\frac{n}{d_3}}\in\mathbb{N}\Longleftrightarrow\frac{d_3}{d_2}\in\mathbb{N}\Longleftrightarrow d_2\mid d_3$. But we also have $d_2\mid d_3+d_4$, so we must have $d_2\mid d_4\Longleftrightarrow\frac{\frac{n}{d_2}}{\frac{n}{d_4}}\in\mathbb{N}\Longleftrightarrow\frac{d_{k-1}}{d_{k-3}}\in\mathbb{N}\Longleftrightarrow d_{k-3}\mid d_{k-1}$. Again, we know that $d_{k-3}\mid d_{k-2}+d_{k-1}$ so we must have $d_{k-3}\mid d_{k-2}$. Repeating the process, eventually we'll end with $1=d_1\mid d_2\mid d_3\mid\dots\mid d_{k-1}\mid d_k=n$. Notice that for any natural number $n$, the three largest divisors of $n$ are $n,\frac{n}{p},\frac{n}{q}$ for prime $2\le p<q$ or $n,\frac{n}{p},\frac{n}{p^2}$ for prime $p\ge 2$. If the three largest divisors of $n$ are $n,\frac{n}{p},\frac{n}{q}$, then $\frac{\frac{n}{p}}{\frac{n}{q}}\in\mathbb{N}\Longleftrightarrow\frac{q}{p}\in\mathbb{Z}\Longleftrightarrow p\mid q$, contradiction. So the three largest divisors of $n$ are $n,\frac{n}{p},\frac{n}{p^2}$ for prime $p\ge 2$. In the similar spirit, we end up showing that $n=p_{k-1}$, which indeed works for any prime $p\ge 2$. Done. $\blacksquare$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
cubres
99 posts
#145
Y by
Storage - grinding IMO problems
This post has been edited 1 time. Last edited by cubres, Feb 3, 2025, 9:44 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
megahertz13
3177 posts
#146
Y by
The answer is $n=p^k$ for a prime number $p$ and a positive integer $k$. These clearly work, and we prove that all other $n$ fail. Assume the contrary, and let the smallest prime factors of $n$ be $a$ and $b$.

Case 1: $a < b < a^2$. Then we have the smallest three divisors are $1, a, b$, so the largest three are $\frac{n}{b}, \frac{n}{a}, n$. However, we need $$\frac{n+\frac{n}{a}}{\frac{n}{b}}=\frac{1+\frac{1}{a}}{\frac{1}{b}}=b+\frac{b}{a}$$to be an integer, but $b/a$ is clearly not an integer. There are no cases here.

Case 2: $a<a^2<\dots<a^k<b$ for $k>1$. We know that $$\frac{b+a^k}{a^{k-1}}=a+\frac{b}{a^{k-1}}$$must be an integer, but this is clearly impossible.

This concludes the problem.

Note: I almost messed up and disregarded Case 1.
This post has been edited 1 time. Last edited by megahertz13, Feb 11, 2025, 10:46 PM
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Ilikeminecraft
302 posts
#147
Y by
I claim $n$ is a perfect power. Assume not. Let $p < q$ be the smallest two prime divisors of $n.$ Let $\frac nq,\frac n{p^c}$ be the two consecutive divisors. Hence, we get $\frac nq \mid \frac n{p^c} + \frac n{p^{c - 1}},$ so $p\mid p + q,$ or $p \mid q.$ All perfect powers work.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
ray66
26 posts
#148
Y by
Let $p$ and $q$ be the smallest two prime factors of $n$. Then $\frac{n}{q} | n\frac{1+p}{p}$ so $\frac{q(p+1)}{p} \in \mathbb{Z}$. But that means $p | q$, impossible. So $n=p^k$ and only has 1 distinct prime factor. All $n$ of this form work for $k \ge 2$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Jupiterballs
30 posts
#149
Y by
Let the smallest prime dividing $n$ be $p$
Then $d_{k-1} = \frac{n}{p}$
Which gives that $d_{k-2} \mid d_{k-1} + d_{k} = \frac{n}{p} + n = \frac{n}{p}(p+1)$

Now, we form cases:-
Case-1) $d_{k-2} \mid \frac{n}{p}$
implying that $d_{k-2} = \frac{n}{p^2}$ (easy to see why)

Case-2) $v_p (d_{k-2}) = v_p (n)$, or $d_{k-2}$ does not divide $n$
Which means that we need another prime $p$
Then this implies that $gcd(p, p+1) = p$

Which is absurd, therefore $d_{k-2} = \frac{n}{p^2}$
Reiterating this gives us that $d_1 = \frac{n}{p^{k-1}}$
or $n = p^{k-1}$, which works clearly
q.e.d
Z K Y
N Quick Reply
G
H
=
a