# 1954 AHSME Problems/Problem 9

## Problem

A point $P$ is outside a circle and is $13$ inches from the center. A secant from $P$ cuts the circle at $Q$ and $R$ so that the external segment of the secant $PQ$ is $9$ inches and $QR$ is $7$ inches. The radius of the circle is:

$\textbf{(A)}\ 3" \qquad \textbf{(B)}\ 4" \qquad \textbf{(C)}\ 5" \qquad \textbf{(D)}\ 6"\qquad\textbf{(E)}\ 7"$

## Solution

Using the Secant-Secant Power Theorem, you can get $9(16)=(13-r)(13+r)$, where $r$ is the radius of the given circle. Solving the equation, you get a quadratic: $r^2-25$. A radius cannot be negative so the answer is $\boxed{\textbf{(C) }5"}$

 1954 AHSC (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 All AHSME Problems and Solutions