# 1980 AHSME Problems/Problem 7

## Problem

Sides $AB,BC,CD$ and $DA$ of convex polygon $ABCD$ have lengths 3, 4, 12, and 13, respectively, and $\angle CBA$ is a right angle. The area of the quadrilateral is $[asy] defaultpen(linewidth(0.7)+fontsize(10)); real r=degrees((12,5)), s=degrees((3,4)); pair D=origin, A=(13,0), C=D+12*dir(r), B=A+3*dir(180-(90-r+s)); draw(A--B--C--D--cycle); markscalefactor=0.05; draw(rightanglemark(A,B,C)); pair point=incenter(A,C,D); label("A", A, dir(point--A)); label("B", B, dir(point--B)); label("C", C, dir(point--C)); label("D", D, dir(point--D)); label("3", A--B, dir(A--B)*dir(-90)); label("4", B--C, dir(B--C)*dir(-90)); label("12", C--D, dir(C--D)*dir(-90)); label("13", D--A, dir(D--A)*dir(-90));[/asy]$ $\text{(A)} \ 32 \qquad \text{(B)} \ 36 \qquad \text{(C)} \ 39 \qquad \text{(D)} \ 42 \qquad \text{(E)} \ 48$

## Solution

Connect C and A, and we have a 3-4-5 right triangle and 5-12-13 right triangle. The area of both is $\frac{3\cdot4}{2}+\frac{5\cdot12}{2}=36\Rightarrow\boxed{(B)}$.

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 