# 1984 IMO Problems

Problems of the 1984 IMO.

## Day I

### Problem 1

Prove that $0\le yz+zx+xy-2xyz\le{7\over27}$, where $x,y$ and $z$ are non-negative real numbers satisfying $x+y+z=1$.

### Problem 2

Find one pair of positive integers $a,b$ such that $ab(a+b)$ is not divisible by $7$, but $(a+b)^7-a^7-b^7$ is divisible by $7^7$.

### Problem 3

Given points $O$ and $A$ in the plane. Every point in the plane is colored with one of a finite number of colors. Given a point $X$ in the plane, the circle $C(X)$ has center $O$ and radius $OX+{\angle AOX\over OX}$, where $\angle AOX$ is measured in radians in the range $[0,2\pi)$. Prove that we can find a point $X$, not on $OA$, such that its color appears on the circumference of the circle $C(X)$.

## Day II

### Problem 4

Let $ABCD$ be a convex quadrilateral with the line $CD$ being tangent to the circle on diameter $AB$. Prove that the line $AB$ is tangent to the circle on diameter $CD$ if and only if the lines $BC$ and $AD$ are parallel.

### Problem 5

Let $d$ be the sum of the lengths of all the diagonals of a plane convex polygon with $n$ vertices (where $n>3$). Let $p$ be its perimeter. Prove that: $$n-3<{2d\over p}<\Bigl[{n\over2}\Bigr]\cdot\Bigl[{n+1\over 2}\Bigr]-2,$$ where $[x]$ denotes the greatest integer not exceeding $x$.

### Problem 6

Let $a,b,c,d$ be odd integers such that $0 and $ad=bc$. Prove that if $a+d=2^k$ and $b+c=2^m$ for some integers $k$ and $m$, then $a=1$.

 1979 IMO (Problems) • Resources Preceded by1983 IMO 1 • 2 • 3 • 4 • 5 • 6 Followed by1985 IMO All IMO Problems and Solutions