# 1988 AHSME Problems/Problem 27

## Problem

In the figure, $AB \perp BC, BC \perp CD$, and $BC$ is tangent to the circle with center $O$ and diameter $AD$. In which one of the following cases is the area of $ABCD$ an integer? $[asy] pair O=origin, A=(-1/sqrt(2),1/sqrt(2)), B=(-1/sqrt(2),-1), C=(1/sqrt(2),-1), D=(1/sqrt(2),-1/sqrt(2)); draw(unitcircle); dot(O); draw(A--B--C--D--A); label("A",A,dir(A)); label("B",B,dir(B)); label("C",C,dir(C)); label("D",D,dir(D)); label("O",O,dir(45)); [/asy]$ $\textbf{(A)}\ AB=3, CD=1\qquad \textbf{(B)}\ AB=5, CD=2\qquad \textbf{(C)}\ AB=7, CD=3\qquad\\ \textbf{(D)}\ AB=9, CD=4\qquad \textbf{(E)}\ AB=11, CD=5$

## Solution

Let $E$ and $F$ be the intersections of lines $AB$ and $BC$ with the circle. One can prove that $BCDE$ is a rectangle, so $BE=CD$.

In order for the area of trapezoid $ABCD$ to be an integer, the expression $\frac{(AB+CD)BC}2=(AB+CD)BF$ must be an integer, so $BF$ must be rational.

By Power of a Point, $AB\cdot BE=BF^2\implies AB\cdot CD=BF$, so $AB\cdot CD$ must be a perfect square. Among the choices, the only one where $AB\cdot CD$ is a perfect square is $\textbf{(D)}\ AB=9, CD=4$

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. 